
Chapter 1

Introduction and Review of Basic Plasma
Properties

1.1 Preliminaries

• Contact:

– Antonius Otto

– Geophysical Institute, 708C

– Phone 474 6169

– Email: ao@how.gi.alaska.edu

– Web site: www.how.gi.alaska.edu/ao/advanced_plasma

– Office hours: Anytime

• Important: participation, criticism, and suggestions

• Scope of the course and contents (see handout or web page)

– Plasma Kinetic Equations and Collisions

– Kinetic (Warm Plasma) Dispersion Relation

∗ Electrostatic Plasma Waves
∗ Electromagnetic Plasma Waves

– Fluid and Kinetic Plasma Equilibria and Steady States

– Fluid Plasma Properties

– Micro- (Kinetic) Instabilities

∗ Concept of Instability (Bunemann and Beam instabilities)
∗ Electrostatic Instabilities
∗ Electromagnetic Instability
∗ Drift waves

1
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– Macro-Instabilities

∗ Rayleigh-Taylor, Kelvin-Helmholtz, Firehose, Mirror
∗ Tearing mode

– Magnetic Reconnection

∗ Simple Models of Reconnection
∗ Effects of Hall Physics and Dissipation
∗ Three-Dimensional Reconnection and Magnetic Topology

– Nonlinear Waves

– Turbulence and Collective Effects (Anomalous resistivity, Diffusion, Particle Acceleration)

• Conduct (see handout or web page)

– Textbooks, some lecture notes on the web, but emphasis on lecture notes

– Homework: analytical

– Grading

– Midterm test and final exam

• Questions

1.2 Review of Basic Plasma Properties

1.2.1 Debye Shielding and Plasma Parameter

Plasma definition: A plasma is a gas of charged particles, which consists of ’free’ positive and/or
negative charge carriers.

• A plasma is a (partially) ionized gas in which the potential energy of a particle due to its nearest
neighbor force is much smaller than its kinetic energy.

Debye Length

Coulomb potential of a test charge qt at r = 0:

φD = qt/(4πε0r). (1.1)

In a plasma the test charge (of infinite mass) modifies the distribution of the particles in its vicinity.

Distribution function from equilibrium statistical mechanics

fs(r,v) = const exp(−Hs/kBTs) (1.2)

with Hamiltonian Hs = msv2/2+qsΦ yields the density distributions
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Figure 1.1: Deflection of Charged particles around the test charge qt .

ni = n0 exp(−eΦ/kBTe)
ne = n0 exp(eΦ/kBTi)

Poisson’s equation:

−∇
2
Φ =

1
ε0

ρc(r, t) =
1
ε0

[qtδ (r)+ e(ni−ne)] (1.3)

Assume eΦ�{kBTe,kBTi} such that exp(eΦ/kBTe)≈ 1+ eΦ/kBTe

=>

∇
2
Φ =− 1

ε0
qtδ (r)+

1
λ 2

D
Φ(r)

with the Debye length as

λ
−2
D =

n0e2

ε0kB

(
1
Te

+
1
Ti

)
(1.4)

At large distances Φ ∝ exp(−r/λD)

Full solution:

φD =
qt

4πε0r
exp
(
− r

λD

)
(1.5)

This potential is sometimes called the Yukawa potential. In comparison to the coulomb potential the
Yukawa potential converges much faster to 0 for length scales larger than the Debye length due to the
exponential factor. Thus the electric field tends to 0 much faster or in other words the electric field from
the test charge is effectively shielded at distances larger than the Debye length.
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Figure 1.2: Illustration of the Debye sphere which shields the individual particle charge from its vicinity.

Defining the ion/electron Debye length λDi,e =
(

ε0kBTi,e
n0e2

)1/2
we have λ

−2
D = λ

−2
Di +λ

−2
De .

=> Quasi-neutrality for any physical length L� λD otherwise binary interaction should be considered.

Exercise: Compute the net charge of the shielding cloud.

The Plasma Parameter:

Using the average potential

〈Φ〉 ∼ e2

4πε0 〈r〉
∼

n1/3
0 e2

4πε0

and average kinetic energy with the thermal speed vs = (kBTs/ms)
1/2:

〈
Ekin,s

〉
=

1
2

ms
〈
v2〉=

3
2

kBTs ≡
3
2

msv2
s

it is easy to demonstrate using
〈
Ekin,s

〉
� 〈Φ〉 that the so-called plasma parameter satisfies

Λs = n0λ
3
Ds� 1 (1.6)

which is implies that the number of particles in a Debye sphere N = 4π

3 n0λ 3
D is much larger than unity.

This is consistent with the shielding. A considerable shielding of individual charges can occur only on
the Debye length if there are sufficient charges in the Debye sphere of each individual particle.
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Exercise: Calculate the electron thermal speed, Debye length, and the plasma parameter for
(a) a tokamak plasma with Te = 108 K, n0 =1019 m−3

(b) the tail magnetosphere with Te = 107 K, n0 =106 m−3

(b) the ionosphere with Te = 103 K, n0 =1012 m−3

(b) the solar atmosphere with Te = 104 K, n0 =1020 m−3

(b) a laser fusion plasma with Te = 107 K, n0 =1029 m−3

Exercise: Can a plasma be maintained at temperatures of Te = 100 K. Hint: Calculate the density limit
using the plasma parameter and explain.

Exercise: Λ ∝ n−1/2
0 T 3/2 While the dependence on temperature seems intuitively clear the density de-

pendence appears odd because lower densities mean less particles and less shielding. Why does
the plasma parameter improve (increase) with decreasing density?

1.2.2 Other Typical Plasma Frequencies and Length Scales

Plasma and Gyro Frequency

Consider an infinite slab of electrons and ion with a width of L (in x) and particle density of n0. Assume
that the electrons are displaced by a small distance ξ � L in the x direction.xρc L L+ξ

ξ

Figure 1.3: Illustration of the displacement between electrons and ions to illustrate plasma oscillations.

This creates two regions of nonzero charge density. Evaluating the resulting force for the electrons yields
a harmonic oscillation with the electron plasma frequency:

ωpe =
(

n0e2

meε0

)1/2

(1.7)

Similarly one can define an ion plasma frequency, however, because of the much larger inertia the basic
plasma frequency is given by the electron plasma frequency.
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Another important set of frequencies in many (electromagnetic) kinetic applications are the electron and
ion gyro frequencies:

ωgs =
qsB
ms

Gyro and Inertial Length Scales

In addition to the Debye length there are two other intrinsic plasma length scale which are associated with
the frequency of the physical process. The ion and electron plasma frequencies define the ion inertial and
electron inertial length scales (or plasma skin depth)

λs =
c

ωps

The second set of length scales in a typical plasma is the gyro-radius

rgs =
vths

ωgs

Both, the inertial and the gyro-scales are much larger for ions. The ordering of plasma processes accord-
ing to temporal and length scales helps to introduce a hierarchy which can identify the important physics
on the respective scales.

Coulomb Collision Frequency and Mean Free Path

The name is actually a bit misleading because the total scattering cross section for coulomb collisions
diverges for the large numbers of particles which have large collision impact parameters. However,
keeping in mind that electric charges are strongly shielded on the Debye scale impact parameters larger
the the Debye length do not contribute to the collision process. The resulting collision frequency is

νc =
√

π

2
n0e4

32πε2
0 m1/2 (kBT )3/2 ln [12πΛ] (1.8)

Exercise: Compute
〈
v3〉

It is interesting to note that using the plasma frequency and the plasma parameter

νc

ωpe
=
√

π

2
1

32π

1
Λ

ln [12πΛ]

For Λ� 1 => νc/ωp� 1

Binary collisions are less important than collective plasma effects! Here the term ln [12πΛ] is called the
Coulomb logarithm. No coincidence: The plasma parameter (and powers thereof) is the only possibility
to create a dimensionless parameter that is a function of m, e, n, and T .

Exercise: Compute the mean free path and the ratio of the mean free path to the Debye length.
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Figure 1.4: Plasma parameters.

1.2.3 Plasma in a Fluid Limit

Consider limit of m, e ∼ ε → 0 under the constraint of the following conserved properties:

• mass density: mn0

• charge density: en0

• kinetic energy density: n0kBT

=> n0 ∼ 1/m, e∼ m, and T ∼ 1/n0 ∼ m

In this limit discreteness vanishes and fluid-like properties survive and

λD =
(

ε0kBn0T
n2

0e2

)1/2

ωp =
(

n2
0e2

mn0ε0

)1/2

Debye length and plasma frequency remain unchanged.

Plasma parameter: Λ = n0λ 3
D→ ∞

Collision frequency: νc→ 0

Exercise: Determine the fluid limit for the plasma parameter, collision frequency, thermal speed, and
gyro frequency eB/m. Discuss the results
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1.3 Basic plasma equations

1.3.1 Maxwell’s Equations

In general magnetic and electric fields are determined by Maxwell’s equations, corresponding boundary
conditions and the source (charges and currents) distributions. In a vacuum these equations are

∇ ·E =
1
ε0

ρc (1.9)

∇×B− 1
c2

∂E
∂ t

= µ0j (1.10)

∇×E+
∂B
∂ t

= 0 (1.11)

∇ ·B = 0. (1.12)

where E and B are electric and magnetic fields.

c = 3 ·108ms−1, ε0 = 8.85 ·10−12Fm−1, and µ0 = 4π ·10−7Hm−1. Sometimes it is convenient to express
the electromagnetic fields in terms of an electric potential Φ and a vector potential A such that

E(r, t) = −∇Φ(r, t)− ∂A(r, t)
∂ t

B(r, t) = ∇×A(r, t)

which requires to solve the electromagnetic field equations for the potentials for instance in the form

1
c2

∂ 2Φ

∂ t2 −∇
2
Φ =

1
ε0

ρc(r, t) (1.13)

1
c2

∂ 2A
∂ t2 −∇

2A = µ0j(r, t) (1.14)

where Φ and A satisfy the Lorentz gauge ∂Φ/∂ t + c2∇ ·A = 0.

Exercise: Derive the equations for the scalar and the vector potentials using the Lorentz gauge.

Exercise: Derive the equations for the scalar and the vector potentials using the Coulomb gauge ∇ ·A =
0. Are the equations for the potential still valid for the Coulomb gauge?

Electromagnetic energy density w and Poynting flux P are

w =
ε0

2
E2 +

B2

2µ0

P =
1
µ0

E×B
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For completeness, electromagnetic properties in media are often described by introducing the electric
displacement and D and the magnetic field strength H

D = ε0E+P

H =
1
µ0

B−M

with the electric polarization P and the magnetization M. Maxwell’s equations are

∇ ·D = ρc

∇×B = j+
∂D
∂ t

∇×E = −∂B
∂ t

∇ ·B = 0.

1.3.2 Lorentz Equations of Motion

In electromagnetic fields the motion of charged particles is determined by the fields through the equations
of motion

dri

dt
= vi (1.15)

dvi

dt
=

qi

m
(E+v×B)ri,t . (1.16)

The electromagnetic forces in a plasma depends on the current and charge densities which are determined
by the collective particle interaction. In a plasma the number of particles in a physical system is usually
rather large. In addition the overwhelming majority of problems deal with the collective particle behavior
rather than the individual one. Discrete particle dynamics is important in some areas of plasma physics
for sufficiently small (‘microscopic’) length or time scales.

1.3.3 Basic Kinetic Equations

Boltzmann equation: The most important kinetic description of the collective plasma dynamics is based
on the so-called single particle distribution function and the Boltzmann equation: To describe a plasma
one can solve the coupled system of Maxwell’s equations and the particle equations of motion.

∂ f
∂ t

+v ·∇ f +
q
m

(E+v×B) ·∇v f =
∂ f
∂ t

∣∣∣∣
collisions

(1.17)

Here the rhs of the equation considers collisional effects. To solve the Boltzmann equation one needs to
evaluate charge and current density from
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qsns = qs

∫
∞

−∞

d3v fs(r,v, t)

qsnsus = qs

∫
∞

−∞

d3vv fs(r,v, t)

and solve Maxwell’s equations.

In the case of thermal equilibrium f assumes locally a Maxwell distribution in velocity space and the
collision term on the rhs of 1.17 vanishes. Equation 1.17is a fluid (advection) equation though in a 6
dimensional space. The lhs can be interpreted as the total derivative of f (r,u, t) along a trajectory given
by the 6 dimensional velocity v(6) = (v, F

m) where F is the Lorentz force.

The collision term on the rhs can consider many different physical or chemical processes. Chemical
reactions, ionization or recombination, friction, diffusion, and energy exchange collisions are contained
in the collision term. Details depend on the corresponding processes.

Vlasov Equations: Often collisions can be neglected in a high temperature plasma. This is specifically
the case if the mean free path is much larger than the size of the system under consideration or if the
collision time is much larger than the typical time scale of a plasma process. almost everywhere except
for small regions in space. In this case the system of equations is called the Vlasov equations and consist
of the collisionless Boltzmann equation

∂ f
∂ t

+v ·∇r f +
F
m
·∇v · f = 0 (1.18)

+ Maxwell equations (1.19)

Defining the total derivative along the 6-dimensional path [r,v] by d/dt = ∂/∂ t + v ·∇r + v̇ ·∇v with
v̇ = dv/dt the collisionless Boltzmann equation reduces to d f /dt = 0. If the forces are derived from a
Hamiltonian the collisionless Boltzmann equation is equivalent to

∂ f
∂ t

+∇x · (v f )+∇v ·
(

F
m

f
)

= 0 (1.20)

Note that this is actually the more basic equation because it implies that the number of particles is con-
served in any volume unless there is a 6-dimensional particle flux through the boundary of the volume.
These equations also imply that the phase space volume for a fixed range of f remains constant for col-
lisionless plasma processes and because Hamiltonian forces imply incompressible dynamics in phase
space, i.e. ∇r ·v+∇v · (F/m) = 0 as illustrated in Figure 1.5.

Exercise: Consider an ordinary continuity equation ∂n/∂ t +∇ · (vn) = 0. The number of particles in an
arbitrary volume is N =

∫
V nd3r. Show that the number of particles changes only due to particle

flux trough the surface of the volume V .
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Figure 1.5: Illustration of the evolution of a collisionless distribution conserving the area inside contours
of constant f .

1.4 Single Particle Dynamics

1.4.1 Electric and Magnetic Field Drifts

The motion of charged particles in assumed electric and magnetic field can provide insight into many
important physical properties of plasmas. While it does not provide the full plasma dynamics it can
provide insight into the collective behavior. In many cases the gyro motion of charged particles is much
faster than superposed particle drifts or the evolution of the electric and magnetic fields. In these cases
the typical particle drifts and respective currents are summarized below.

ElectricField : vE =
1

B2 E×B (1.21)

GeneralForce : vF =
1

qB2 F×B (1.22)

Polarisation : vP =
m

qB2
dE⊥
dt

(1.23)

Curvature : vC =
mv2
‖

qB4 B× [(B ·∇)B] (1.24)

Gradient : v∇ =
mv2
⊥

2qB3 (B×∇B) (1.25)

Most drifts are associated with an electric current which is given by j = en(vi−ve).

Polarisation : jP =
n(mi +me)

B2
dE⊥
dt

(1.26)

Curvature : jC =
n
(

miv2
i‖+mev2

e‖

)
B4 B× [(B ·∇)B] (1.27)

Gradient : j∇ =
n
(
miv2

i⊥+mev2
e⊥
)

2B3 (B×∇B) (1.28)

These drifts have been determined by model electric and magnetic fields. Thus they describe test particle
motion if the electric and magnetic fields were in fact as assumed. However, it should be reminded that
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the currents due to the drifts alter the fields. If these changes are small compared to the background field
it is justified to apply the drift model. The derived particle drifts do not contain any collective behavior.
For this reason it is a nontrivial aspect to compare particle and fluid plasma drifts. We will return to this
issue in a later chapter.

1.4.2 Magnetic Moment and Adiabatic Invariants

First Adiabatic Invariant

The magnetic moment of a closed current loop is

µ =
1
2

I
∮

C
r×dl =

mv2
⊥

2B
(1.29)

or periodic motion with a period smaller than changes of the overall system (slowly varying electric and
magnetic fields) the action integral

Ji =
∮

Pidqi (1.30)

is a constant of motion and an adiabatic invariant. The first adiabatic invariant is associated with the gyro
motion with the generalized coordinate l along the circular particle path and the associated generalized
momentum Pg = mv⊥+qA:

J1 =
∮

(mv⊥+qA) ·dl

Properties

The force associated with the conservation of the magnetic moment is

Fµ =−
mv2
⊥

2B
∇B (1.31)

Adiabatic (Betatron) heating can occur due to a compression of the magnetic field:

W⊥2 =
B2

B1
W⊥1 (1.32)

Magnetic mirror motion occurs if a particle moves in an increasing magnetic field. Defining the pitch
angle α as the angle between the magnetic field and the particle velocity, the perpendicular component of
the particle velocity is v⊥ = vsinα . If the pitch angle at a location 1 is α1 the pitchangle changes during
the motion along the magnetic field as

sin2
α =

B
B1

sin2
α1
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At the mirror point the pitch angle becomes 90◦ and the parallel velocity of the particle is 0 with the
condition

sinα1 =
√

B1/Bmirror (1.33)

Mirror point

Figure 1.6: Illustration of magnetic mirror motion.

The force responsible for decelerating the particle is the force in (1.31).

Second (Longitudinal) Adiabatic Invariant

The mirror motion implies a second quasi-periodic motion for a particle in a mirror magnetic field ,
i.e., the motion from one mirror point to the opposite and back with a bounce frequency of ωb. For
configurational changes on a time scale τ � 1/ωb the corresponding action integral

J =
∮

mv‖ds (1.34)

is a longitudinal invariant of the particle motion.

In terms of an average parallel velocity
〈
v‖
〉

the invariant is J = 2ml
〈
v‖
〉

with l being the length of the
entire field line between the mirror points. The square of this invariant implies for the parallel energy〈

W‖
〉

2〈
W‖
〉

1

=
l2
1

l2
2

(1.35)

Therefore as the length of the field line between mirror points changes, so does the parallel energy which
is basic for so-called Fermi acceleration.

Exercise: Demonstrate that the momentum of an ideally reflecting ball which bounces between two
walls which approach each other with a velocity u, satisfies p‖d = const where d is the distance
between the walls and p‖ is the momentum normal to the wall surface.

Third (Drift) Adiabatic Invariant

The third adiabatic invariant is the magnetic flux encircled by the (periodic) drift path of a particle.
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Φ =
∮

vdrdψ (1.36)

Similar to the other invariants it requires slow configurational changes τ � 1/ωd where ωd is the fre-
quency of the drift motion.

1.4.3 Drift Kinetic Equations

Considering slow changes (compared to the gyro period) of the electric and magnetic fields and gradients
of these which length scales much larger than the gyro radius of charged particles it is convenient to split
the particles location vector into the slowly changing location of the gyro center R(t) and a fast changing
actual particle location relative to the gyro center rg(t):

r(t) = R(t)+ rg(t) (1.37)

In this representation on can consider the parameters of the gyro motion as functions of the guiding
center location: B(R(t), t) => ωg(R(t)) and µ(R(t)) = mv2

⊥ (t)/(2B(R(t) , t)). However, for slowly
changing fields the magnetic moment is approximately constant and changes in the total kinetic energy
ε = m

(
v2
‖+ v2

⊥

)
/2 are due to drifts along a component of the electric field and changes of the magnetic

field. In combination the basic equations for the drift kinetic equations are

µ =
mv2
⊥

2B
= const (1.38)

dε

dt
= eE · dR

dt
+

mv2
⊥

2B
∂B
∂ t

(1.39)

dR
dt

= v‖
B
B

+
E×B

B2 +
mv2
⊥

2qB3 (B×∇B)+
mv2
‖

qB4 B× [(B ·∇)B] (1.40)

for given electric and magnetic fields which satisfy the slowness (adiabatic) conditions. The last equation
in this system is the equation describing the actual motion of the guiding center. The first term in this
equation is the motion parallel to the magnet field. The next three terms are the E×B, magnetic gradient,
and magnetic curvature drift.

Note that the polarization drift is not contained here because it is higher order than the other drifts be-
cause it involves the time derivative of the electric field which needs to be small in the drift kinetic
approximation.

These equations can also be used for a self-consistent solution of a plasma problem if the system is
coupled to Maxwell’s equations and the adiabatic (slow) evolution is satisfied for the actual solution.
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1.5 Fluid Plasma and Magnetohydrodynamic Equations

1.5.1 Definitions

The equations of ordinary fluids and gases as well as those for magnetofluids (plasmas) can be obtained
from the Boltzmann equation 1.17 in a systematic manner. Defining the 0th, 1st, and 2nd moment of the
integral over the distribution function fs as mass density ρS, fluid bulk velocity us, and pressure tensor
Πs

ρs(r, t) = ms

∫
∞

−∞

d3v fs(r,v, t) (1.41)

us(r, t) =
1
ns

∫
∞

−∞

d3vv fs(r,v, t) (1.42)

Πs(r, t) = ms

∫
∞

−∞

d3v(v−us)(v−us) fs(r,v, t). (1.43)

where the index s indicates the particle species (electrons and different ion species if present). With these
definitions one also obtains number density ns(r, t) = ρs/ms, charge density ρc,s(r, t) = qsns, momentum
density ps(r, t) = ρsus, current density js(r, t) = qsus, and scalar pressure (the isotropic portion of the
pressure) ps(r, t) = 1

3Tr(Πs) where the individual particle mass ms and charge qs are used. In the follow-
ing section we will drop the index s for a more compact representation but remind the reader that there is
a separate set of fluid equations for each particle species.

1.5.2 Fluid Moments

The fluid equations are determined by the moments of the Boltzmann equation, i.e.,

∫
∞

−∞

d3vvi(BoltzmannEqu.)s

To account for the collision term in (1.17) we define

Qρ
s (r, t) = ms

∫
∞

−∞

d3v
∂ fs

∂ t

∣∣∣∣
c

(1.44)

Qp
s (r, t) = ms

∫
∞

−∞

d3v(v−us)
∂ fs

∂ t

∣∣∣∣
c

(1.45)

QE
s (r, t) =

1
2

mS

∫
∞

−∞

d3v(v−us)
2 ∂ fs

∂ t

∣∣∣∣
c

(1.46)

The precise form of these terms depends on the particular collisional properties of the systems and will
not be specified at this point. The respective integrals over the velocity yield
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∂ρs

∂ t
= −∇ · (ρsus)+Qρ

s (1.47)

∂ρsus

∂ t
= −∇ · (ρsusus)−∇ ·Πs +qsns (E+us×B)+usQ

ρ
s +Qp

s (1.48)

∂

∂ t

(
1

γ−1
ps +

1
2

ρsu2
s

)
= −∇ ·

(
1
2

ρsu2
Sus +

1
γs−1

psus +us ·Πs +Ls

)
+qsnsus ·E+

1
2

u2
s Qρ

s +us ·Qp
s +QE

s (1.49)

with the heat flux Ls(r, t) = 1
2ms

∫
∞

∞
d3v(v−us)(v−us)2 f (r,v, t) and γs is the ratio of specific heats, i.e.,

γs = 5/3 if a gas has 3 degrees of freedom for motion.

Elimination of ∂

∂ t

(1
2ρsu2

s
)

in the energy equation (with the aid of (1.47) and (1.47)) yields

1
γs−1

(
∂

∂ t
ps +∇ · psus

)
=−(Πs ·∇) ·us−∇ ·Ls +QE

s (1.50)

As indicated by the index s a set consisting of continuity, momentum, and energy equation is present for
each particle species, specifically in a fully ionized proton and electron plasma. There are many applica-
tions and further approximations of the above sets of equations. A specifically important approximation
valid on scales much larger than the Debye length is neutrality. The set of two-fluid equations is also
often used to examine waves in a plasma. Finally it is important to note that the above set of equations
combined with Maxwell’s equations must conserve total mass, momentum, and energy. The only excep-
tion to this are sources that are not contained in the basic approximation, for instance strong radiation that
interacts with the plasma or large energy fluxes into a plasma through separate energetic particle fluxes
(such as electron precipitation leading to aurora) which are not accounted for in these equations.

Exercise: Determine the integral of the 1st order moment for the first two terms in the Boltzmann equa-
tion.

Exercise: Derive the 1st order moment force term for a gravitational force and the Lorentz force (velocity
dependent).

Exercise: Do the same for the energy equation (i.e., multiply the Boltzmann equation (1.17) with 1
2mv2

and integrate).

Exercise: Derive the equation for heat conduction with the stated assumptions.

Exercise: Derive the heat conduction equation for nonzero velocity u.

Exercise: Derive the continuity equation and momentum equation for irrotational flow.

Exercise: Assume a scalar pressure, L = 0, and QE = 0 in the pressure equation (1.50). Consider a func-
tion g = paρb and determine a and b such that the resulting equation for g assumes a conservative
form, i.e., ∂g/∂ t +∇ ·gu = 0.

Exercise: Assume a scalar pressure, L = 0, and QE = 0 in the pressure equation (1.50). Consider a
function h = paρb and determine a and b such that the resulting equation for h assumes a total
derivative, i.e., ∂h/∂ t +u ·∇h = 0. For γ = 5/3 this equation becomes a measure for entropy
because entropy is conserved for adiabatic changes.
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1.5.3 General Ohm’s law and MHD Equations

Assuming electrons and single charged ions with qi =−qe = e, a charge neutral plasma ne = ni, and the
following definitions for total mass density ρ , effective mass M, and bulk velocity or total mass density
flux ρu, and total current density j

ρ = n(mi +me)
M = mi +me

ρu = n(miui +meue)
j = en(ui−ue)

we can express ion and electron velocities through

ui = u+
me

mi

j
ne
' u

ue = u− j
ne

Further we can combine the two fluid equation into a single set of equations complemented by Ohm’s
law. This latter is obtained by multiplying the ion equation with qi/mi and the electron equation with
qe/me and the sum of the modified equations:

E+u×B =
memi

e2ρ

[
∂ j
∂ t

+∇ · (uj+ ju)
]
− M

eρ
∇pe +

mi

eρ
j×B+ηj (1.51)

with the resistivity η = meνc/ne2 where νc is the collision frequency between electrons and ions (or
neutrals). This equation is usually termed generalized Ohm’s law. In the above equation the first
term on the rhs is often called the inertia term because it represents the electron inertia in this equation.
Using a scaling analysis this term scales with the so-called electron inertia scale (or plasma skin depth)
) c/ωpe =

(
ε0mec2/ne2)1/2. The same analysis demonstrates that the 2nd and 3rd terms on the rhs

scale with the ion inertia scale c/ωpi = (mi/me)1/2c/ωpe� c/ωpe this scaling provides a hierarchy of
length scales for which plasma processes involve the physics associated with these terms. Specifically a
scaling which retains the ion inertia terms but neglects the electron inertia term is often addressed as Hall
Magnetohydrodynamics.

Taking sum of the two fluid continuity, momentum and energy equations, neglecting electron and ion
inertial effects, using total pressure as p = pe + pi, assuming isotropic pressure, and including Maxwell’s
equations leads to the so-called resistive magnetohydrodynamic (or MHD) equations
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∂ρ

∂ t
+∇ ·ρu = 0 (1.52)

∂ρu
∂ t

+∇ · (ρuu) = −∇p+ j×B (1.53)

E+u×B = ηj (1.54)
1

γ−1

(
∂

∂ t
p+∇ · pu

)
= −p∇ ·u+ηj2 (1.55)

∇×B = µ0j (1.56)

∇×E+
∂B
∂ t

= 0 (1.57)

Here charge continuity results in ∇ · j = 0. The above equations do not contain ∇ ·B = 0. This equation
enters actually as an initial condition. If ∇ ·B = 0 is satisfied initially then the induction equation implies
∇ ·B = 0 at all times.

Exercise: Derive the above equations.

Exercise: Derive Ohm’s law from the two fluid approximation.

Exercise: Use Ampere’s law and ∇ ·B = 0 to show that the momentum equation can also be written as

∂ρu
∂ t

=−∇ ·
[

ρuu+
(

p+
B2

2µ0

)
1− 1

µ0
BB
]

In the above equation the term B2/(2µ0) is referred to as a magnetic pressure. This terminology makes
sense as will be shown in simple magnetic equilibrium situations.

Exercise: Assume a plasma density of 1 cm−3, temperature equivalent to 1 keV, and a magnetic field of
20 nT which are typical for the near Earth magnetotail. Determine electron and ion inertia scales.
Assume that quasi-neutrality is violated in a sphere with the radius of the electron inertia length by
1 % (e.g. 1% of the ion charge is not compensated by electrons. If outside were a vacuum what is
the electric field outside the sphere? What velocity perpendicular to the magnetic field is required
by Ohm’s law to generate an electric field magnitude equal to that on the surface of the sphere?

Exercise: For the plasma in the prior exercise, determine the temperature in degrees Kelvin. Determine
the energy density in kW hours/m3 and kW hours /R3

e (1 RE = 6370 km). For the sake of simplicity
assume that the plasma sheet is represented by a cylinder with 10 RE radius and 100 RE length.
How long could a power plant with an output of 1000 MW operate on the energy stored in the
plasma?

1.5.4 Properties of the MHD equations

Frozen-in Condition

Considering a closed contour C in an ideal (η = 0) MHD plasma where the contour moves with the
plasma bulk velocity u such that Ohm’s law reduces to



CHAPTER 1. INTRODUCTION AND REVIEW OF BASIC PLASMA PROPERTIES 19

B

u

C(t0)

C(t0+dt)

Figure 1.7: Illustration of the frozen-in condition.

E+u×B = 0

This implies that the magnetic flux is frozen into the plasma motion in the following way. Assuming the
magnetic flux through the surface C is the surface integral

ΦC =
∫

C
B ·ds

with dsC being the surface element of the contour C. The contour elements move with the fluid velocity
u. It is straightforward to demonstrate that the change of magnetic flux through the contour C is 0

dΦC

dt
= 0

A more complete form of Ohm’s law should be considered if gradients on smaller scales exist in a plasma.
Including the ion inertia terms in Ohm’s law yields

E+ue×B =−M
eρ

∇pe (1.58)

such that the electron velocity substitutes the bulk velocity of ideal Ohm’s law. Here again the frozen-in
condition dΦ/dt = 0 is satisfied if the contour C moves with the electron velocity

ue = u− mi

eρ
j (1.59)

Comparing this with generalized Ohm’s law we can re-write this neglecting the electron inertia scale as

There are various applications using the fluid and the kinetic equations. Typical applications consider
waves, discontinuities and shocks, instabilities, steady state solutions, and equilibrium solutions. Partic-
ularly for the last topic it is important to note the following terminology.

Steady state assumes time stationary solutions with nonzero velocity, ∂/∂ t = 0 and u 6= 0.

Equilibrium solutions assume ∂/∂ t = 0 and u = 0. Note that for kinetic systems the velocity in phase
space is always nonzero for physical systems. Also the electron velocity is nonzero in current
regions.

Electrostatic solutions assume ∂B/∂ t = 0. This implies ∇×E = 0 or E = −∇φ . In this case Ohm’s
law must be replaced by the Coulomb equation.
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Entropy and Adiabatic Convection

Assuming an ideal MHD plasma the combination of the continuity equation and the internal energy
equation

1
γ−1

(
∂

∂ t
p+∇ · pu

)
=−p∇ ·u

demonstrates that the quantity s = pρ−γ is conserved along the path of any fluid element or

d pρ−γ

dt
=

∂ pρ−γ

∂ t
+u ·∇

(
pρ
−γ
)

= 0 (1.60)

It is possible to identify s with the local entropy in the fluid. In other words for sufficiently slow changes
local entropy is conserved along the path of any fluid element in the absence of resistive (or viscous)
heating.

It is also instructive to note that the quantity h = p1/γ satisfies a continuity equation,

∂ p1/γ

∂ t
+∇ ·up1/γ = 0

i.e., the integral of h in any finite volume of space changes only due to in- and outflow into the volume for
ideal MHD dynamics. Let us consider specifically the integral over the volume of a magnetic flux tube
(without loss at the ends of the flux tube). It can be shown that any conserved quantity (i.e., satisfying a
continuity equation) is also conserved over this flux tube volume. Using

NC =
∫ l2

l1

(∫ ∫
Ac(l)

nds
)

dl ↪→ dNC

dt
= 0

In the limit where the cross section of the flux tube approaches 0 we can express this for instance for the
number of particles in a flux tube by

N =
∫ l2

l1

ndl
B

↪→ dN
dt

= 0

(Note that the with cross section of a flux tube center on a specific field line is proportional to 1/B). Since
hsatisfies a continuity it is clear that for

H =
∫ l2

l1

p1/γdl
B

↪→ dH
dt

= 0

These relations do not require that the system is in an equilibrium. However, if an equilibrium is obtained
the pressure is constant along a field line and

H = p1/γ

∫ l2

l1

dl
B

= p1/γV = const
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where V =
∫

dl/B is called the specific flux tube volume. Taking S = Hγ = pV γ provides the flux tube
equivalent of the local entropy function, in other words H or S are flux tube entropy functions. This is
a generalisation of the local entropy concept and similarly to local entropy these are constant in time
unless (a) there is some nonadiabatic heating or (b) the integrity of magnetic flux tubes is destroyed
through resistivity.

Exercise: Derive equation (1.60) from the pressure equation.l1 l2AcB l2l1 Ac
Figure 1.8: Examples of magnetic flux tubes (magnetic bottle and magnetosphere)

MHD Conservation Laws:

The MHD equation satisfy mass, momentum, and energy conservation.

∂ρ

∂ t
= −∇ ·ρu

∂ρu
∂ t

= −∇ ·
[

ρuu+
(

p+
B2

2µ0

)
1− 1

µ0
BB
]

∂wtot

∂ t
= −∇ ·

[(
1
2

ρu2 +
γ p

γ−1
+

1
µ0

B2
)

u− u ·B
µ0

B+
η

µ0
j×B

]
with the total energy density

wtot =
1
2

ρu2 +
p

γ−1
+

1
2µ0

B2 (1.61)

Exercise: Demonstrate the validity of the energy conservation equation.

The various terms in (1.61) are the energy densities of the bulk flow 1
2ρu2, thermal energy p

γ−1 , and
magnetic field energy density 1

2µ0
B2.
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Other Properties of the MHD approximation

Important insight into the large scale plasma behaviour is obtained in the framework of

• MHD equilibrium theory

• Stability and energy principles

• MHD waves

• Macroscopic instabilities


