
Chapter 5

Instabilities

5.1 Maco-Instabilities - Ideal MHD

5.1.1 Rayleigh-Taylor Instability

Before we consider the so-caled normal mode approach let us first look at the result using th evariational
approach:

The geometry: Magnetic field along the (horizontal) y direction, gravity pointing in the negative z di-
rection with the potential ψ = gz. We also assume for simplicity a two-dimensional incompressible
perturbations ξ with ∂y = 0 and ∇ · ξ = 0.

The equilibrium condition for this configuration is given by

d

dz

[
p (z) +

By (z)2

2µ0

]
+ ρ (z) g = 0

In this case the potential simplifies considerable resulting in

U2m = −g
2

∫
V

ρ′ |ξz|2 dxdz

with ρ′ = dρ/dz. This expression leads to the immediate result that the configuration is unstable for
ρ′ > 0. The resulting change is a reconfiguration of straight magnetic field lines (=> interchange).

Normal mode analysis:

Note that MHD momentum equation with gravity can be written as

ρ
∂u

∂t
= ρu · ∇u−∇p+ j×B− ρg

We now linearize the ideal MHD equations around the equilibrium state.
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∂ρ1

∂t
= −u1 · ∇ρ− u · ∇ρ1 − ρ1∇ · u− ρ∇ · u1

ρ
∂u1

∂t
= −ρ1u · ∇u− ρu1 · ∇u− ρu · ∇u1

−∇p1 +
1

µ0

(∇×B1)×B +
1

µ0

(∇×B)×B1 − ρ1gez

∂B1

∂t
= ∇× (u1 ×B) +∇× (u×B1)

∂p1

∂t
= −u1 · ∇p− u · ∇p1 − γp1∇ · u− γp∇ · u1

Here we omitted the index 0 for steady state variables. To simplify the problem further we assume that

• All perturbed quantities assume the form u1 (x, z, t) = ũ1 (z) exp [ikx+ qt]

• Perturbations are incompressible∇ · u1 = 0 =⇒

• Gravity is in the z direction.

• All variations of the equilibrium (steady state) are in the z direcion - B = B (z), u = u (z), ...

• Plasma flow is in the x direction.

• The magnetic field has only x and y components.

qρ1 = −u1z∂zρ− ikuxρ1

ρqu1 = −ρu1z∂zuxex − ikρuxu1

−∇p1 +
1

µ0

(∇×B1)×B− ρ1gez

qB1 = ∇× (u1 ×B) +∇× (u×B1)

qp1 = −u1z∂zp− ikuxp1

j×B term:

[(∇×B1)×B]x = (∂zB1x − ∂xB1z)Bz − (∂xB1y − ∂yB1x)By

= (∂zB1x − ikB1z)Bz − ikB1yBy

[(∇×B1)×B]y = (∂xB1y − ∂yB1x)Bx − (∂yB1z − ∂zB1y)Bz

= ikB1yBx + ∂zB1yBz

[(∇×B1)×B]z = ∂zB1yBy − (∂zB1x − ikB1z)Bx

Induction equation:
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qB1x = −∂z (u1zBx − u1xBz − uxB1z)

qB1y = ∂z (u1yBz − u1zBy)− ik (u1xBy − u1yBx + uxB1y)

qB1z = ik (u1zBx − u1xBz − uxB1z)

Conditions∇ · u1 = 0 and ∇ ·B1 = 0

iku1x + ∂zu1z = 0

ikB1x + ∂zB1z = 0

Consider Bz = 0:

ρqu1x = −ρu1z∂zux − ikρuxu1x − ikp1 −
1

µ0

ikByB1y

ρqu1y = −ikρuxu1y +
1

µ0

ikBxB1y

ρqu1z = −ikρuxu1z − ∂zp1 +
1

µ0

[By∂zB1y −Bx (∂zB1x − ikB1z)]− ρ1g

qB1x = −∂z (u1zBx − uxB1z)

qB1y = −ik (−u1yBx + uxB1y)

qB1z = ik (u1zBx − uxB1z)

Where in the qB1y term∇ · u1 = 0 has been used.

Considering only the y components

ρ (q + ikux)u1y =
1

µ0

ikBxB1y

(q + ikux)B1y = iku1yBx

=⇒ q = −ikux ± ik
[
B2
x

µ0ρ

]1/2

such that the y components of the perturbation decouple fom the rest of the equations.

ρqu1x = −ρu1z∂zux − ikρuxu1x − ikp1

ρqu1z = −ikρuxu1z − ∂zp1 −
1

µ0

Bx (∂zB1x − ikB1z)− ρ1g

qB1x = −∂z (u1zBx − uxB1z)

qB1z = ik (u1zBx − uxB1z)
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Rayleigh-Taylor Instability: Assuming ux = 0:

qρ1 = −u1z∂zρ

ρqu1x = −ikp1

ρqu1z = −∂zp1 −
1

µ0

Bx (∂zB1x − ikB1z)− ρ1g

qB1x = −Bx∂zu1z = Bxiku1x

qB1z = Bxiku1z

0 = iku1x + ∂zu1z

ρqu1z = −∂z
ρqu1x

−ik
− 1

µ0

Bx

(
∂z
Bxiku1x

q
− ikBxiku1z

q

)
+ g

u1z∂zρ

q

ρqu1z = ∂z
ρq∂zu1z

− (ik)2 +
1

µ0

Bx

(
∂z
Bx∂zu1z

q
+ ik

Bxiku1z

q

)
+ g

u1z∂zρ

q

k2ρu1z = ∂z (ρ∂zu1z) +
k2

q2

B2
x

µ0

(
∂2
zu1z − k2u1z

)
+
gk2

q2
(∂zρ)u1z

∂z (ρ∂zu1z) +
k2

q2

B2
x

µ0

(
∂2
zu1z − k2u1z

)
− k2ρu1z = −gk

2

q2
(∂zρ)u1z (5.1)

For ρ = const solutions of the equation are u1z = a exp (±kz) exp [ikx+ qt]. This particularly implies
that u1z (z → +∞) ∼ exp (−kz) and u1z (z → −∞) ∼ exp (+kz). Let us consider a situation where
we have a boundary at z = 0 where ρ = ρ1 for z < 0 and ρ = ρ2 for z > 0 such that

ũ1z (z) = a exp (kz) for z < 0

ũ1z (z) = a exp (−kz) for z ≥ 0

where the choice of the same coefficient a insures that the velocity perturbation is continuous at z = 0.
However we also have to consider the discontinuity in ρ for (5.1). This can be resolved by integrating the
equation from −ε to +ε equation and considering the limit of ε→ 0.

∆ε (ρ∂zũ1z) +
k2

q2

B2
x

µ0

∆ε∂zũ1z = −gk
2

q2
(∆ερ) ũ1z

where ∆εf (z) = lim
ε→0

[f (ε)− f (−ε)]

Substitution of the solution ũ1z (z) into this condition yields

(−kaρ2 − kaρ1) +
k2

q2

B2
x

µ0

(−ka− ka) = −gk
2

q2
(ρ2 − ρ1) a

q2 = gk

(
ρ2 − ρ1

ρ2 + ρ1

− 2k

g

B2
x

µ0 (ρ2 + ρ1)

)
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or considering that we also included a By component in the equilibrium:

q2 = gk

(
ρ2 − ρ1

ρ2 + ρ1

− 2

gk

(k ·B)2

µ0 (ρ2 + ρ1)

)

Discussion:

• magnetic field reduces growth rate if k ·B 6= 0.

• Instability stabilized for

k ≥ µ0g (ρ2 − ρ1)

2B2
x

• Maximum growth rate for

k =
µ0g (ρ2 − ρ1)

4B2
x

• Magnetic field By has no influence on the instability

• Magnetic field acts similar to an effective surface tension force Teff = 2B2
x/µ0k

Figure...

5.1.2 Kelvin-Helmholtz Instability

Conditions∇ · u1 = 0 and ∇ ·B1 = 0

iku1x + ∂zu1z = 0

ikB1x + ∂zB1z = 0

such that the y components of the perturbation decouple fom the rest of the equations.

qρ1 = −u1z∂zρ− ikuxρ1

ρqu1x = −ρu1z∂zux − ikρuxu1x − ikp1

ρqu1z = −ikρuxu1z − ∂zp1 −
1

µ0

Bx (∂zB1x − ikB1z)− ρ1g

qB1x = −∂z (u1zBx − uxB1z)

qB1z = ik (u1zBx − uxB1z)

Manipulating equations:
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∂z [ρ (q + ikux) ∂zu1z − ikρ (∂zux)u1z] = k2ρ (q + ikux)u1z + k2B
2
x

µ0

(
∂z

∂zu1z

q + ikux
− k2u1z

q + ikux

)
+ik3B

2
x

µ0

∂z

(
∂zux

(q + ikux)
2u1z

)
+

gk2

q + ikux
(∂zρ)u1z(5.2)

Important to note that continuity at a boundarys zs is determined by

∂tzs1 + ux∂xzs1 = u1z (zs)

and since the displacement of the boundary has to be unique this implies that u1z (zs) / (q + ikux) must
be continuous at the boundary. Let us consider a steady state with constant ux and ρ on the two sides
of a plane boundary with a jump across the boundary. The solutions again must be exponential ±kz are
chosen as

ũ1z (z) = a (q + ikU1) exp (kz) with U1 = ux for z < 0

ũ1z (z) = a (q + ikU2) exp (−kz) with U2 = ux for z ≥ 0

to provide the correct boundary and continuity conditions. By integrating (5.2) over an ε vicinity of the
boundary we obtain

ρ2 (q + ikU2)2 + ρ1 (q + ikU1)2 = gk (ρ1 − ρ2) + 2k2B2
x/µ0

With ω = iq the roots of the dispersion relation are

ω = k (α1U1 + α2U2)

±
[
gk (α1 − α2) + 2k2 B2

x

µ0 (ρ2 + ρ1)
− k2α1α1 (U2 − U1)2

]1/2

with αi =
ρi

ρ1 + ρ2

A negative argument in the squareroot generates an imaginary part of ω (or a real part of q) and represents
instability. The gravitational term leads to the same Rayleigh-Taylor mode that has been discussed before.
Ignoring this term illustrates that any difference in the velocity can lead to instability.

Discussion in absence of gravity:

• magnetic field reduces growth rate if k ·B 6= 0.

• Instability stabilized for

2B2
x

µ0 (ρ2 + ρ1)
≥ α1α1 (U2 − U1)2

• Instability is suppressed if relative velocity does not exceed the root-mean-square Alfven speed.

• Magnetic field By has no influence on the instability

Other Macro-instabilities: Firehose, Mirror
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5.1.3 Resistive Tearing Mode

This mode is an instability that occurs only in current sheet. For this derivation we assume the equilibrium
to be the simple Harris sheet with ∂z = 0 and normalized variables such that p (A) = exp (−2A),
∆A = −0.5dp/dA, and

A = Az = A0 ln cosh y

p = cosh−2 y

Bx = tanh y

By = 0

jz = − cosh−2 y

Different from our approach for the Kelvin Helmholtz and Rayleigh-Taylor modes we linearize the resis-
tive MHD equations

∂ρ

∂t
+∇ · ρu = 0

∂ρu

∂t
+∇ · (ρuu) = −∇p+ j×B

∂B

∂t
= ∇× (u×B− ηj)

1

γ − 1

(
∂

∂t
p+∇ · pu

)
= −p∇ · u + ηj2

∇×B = j

with the resistivity η but we are still using the assumption of incompressibility ∇ · u = 0. In the
normalized equations the resistivity is also normalized and is given by η = ηp/ (µ0L0vA), with the
physical resistivity ηp, typical length scale L0 and typical Alfven speed vA. The normalized resistivity is
equal to the inverse Lundguist number (magnetic Reynoldsnumber) S = 1/η = τdiff/τA. Here τ)diff is
the diffusion time and τA is the Alfven time. The linearization is performed by reformulating the basic
equations using the z component of the vector potential (or flux function) A and a stream function v to
express magnetic field and velocity as

B = ∇A× ez +Bzez

u = ∇v × ez + uzez

This choice alway satisfies∇·B = 0 and∇·u = 0. Inserting the expressions for B and u into the MHD
equations (momentum and Ohm’s law) leads to

∇ · [ρdt∇v] = ez · (∇∆A×∇A)

ρdtuz = ez · (∇Bz ×∇A)

dtA = η∆A

dtBz = ez · (∇uz ×∇a) +∇ · (η∇bz)
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where we abbreviated dtf = df/dt = ∂tf + u⊥ · ∇f = ∂tf + ez · (∇f ×∇v) which is the total or
convective derivative. This form is also convenient because it demonstrates that the solution does not
depend on the pressure gradient because of ∇ · u = 0. Further it illustrates that the solution for uz and
Bz decouples from the equations for the magnetic flux and for the stream function, i.e., choosing uz = 0
and Bz=0 does not alter the solution for A and v. The above set of equations is easy to linearize (noting
that the velocity is 0 for the equilibrium, v = uz = 0). Using perturbations of the type

f (x, y, t) = f̃ (y) exp (ikx+ qt)

we obtain for the equations for v and A (for constant η):

q∇ · ρ∇v1 =
dj

dA
B · ∇A1 + B · ∇∆A1 (5.3)

qA1 = B · ∇v1 + η∆A1 (5.4)

Since the equilibrium solution is smoothly varying with y we cannot use the simple approach used for the
Rayleigh-Taylor instability. A single analytic solution is difficult to obtain such that the typical approach
is to scale the 2 ordinary differential equation for typical values of y. Thus we will obtain an outer
solution similar to the prior treatment that is valid for y ≥ O(1) and an inner solution that applies to
a small ε vicinity of y = 0. We than match the value and derivatives of these solutions to obtain the
dispersion relation q (k). The scaling used is given by

q2 � k2 ≤ O (1)

|q| � η = 1/S

In explicit form the equations (5.3) and (5.4) for ρ = 1 are

qv′′1 − qk2v1 + ikB′′xA1 + ik3BxA1 − ikBxA
′′
1 = 0 (5.5)

qA1 − ikBxv1 − ηA′′1 + ηk2A1 = 0 (5.6)

Here we ommitted the ~ in Ã1 for convenience.

Outer solution:

We note that the Lundquist number is a very large number for most space plasma. For the outer solutions
y ≥ O (1) and equation (5.6) implies that v1 = O (qA1/kBx). Substitution in (5.5) yields to lowest order

A′′1 +

(
1

cosh2 y
− k2

)
A1 = 0

The general solution for this equation is

A1 = c1 exp (−ky) (tanh y + k) + c2 exp (ky) (tanh y − k)
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For the matching to the inner solution we need the logarithmic derivative in the limit to y → 0:

A′1 (0)

A1 (0)
=

1− k2

k

Inner Solution:

Similar to the outer solution we need to identify the significant terms in the differential equations that
determine the inner solution. This solution is determined in a small ε vicinity of y = 0. Here we can
use the Taylor expansion of the magnetic field and scaling y to the new coordinate ζ = y/ε such the
y = εζ and d/dy = ε−1d/dζ is used to identify the leading order terms in (5.5) and (5.6). The resulting
equations are again expressed in y because the scaling is only used to identify the leading order terms.

qv′′1 − ikyA′′1 = 0

qA1 − ikyv1 − ηA′′1 = 0

Integrating the first of these equations to eleiminate v1 leads to

zA′′′1 − A′′1 −
(
κ2y3 + λκy

)
A1′ +

(
λκ+ κ2y2

)
A1 = κ2y2c̃ (5.7)

with κ = kS1/2/q1/2

λ = q3/2S1/2/k

The general solution of (5.7) is given in a closed analytic form:

A1 (y) = c̃+ c0y + c1y

∫ κy2

0

m1 (w) dw + +c2y

∫ ∞
κy2

m2 (w) dw + +cpy

∫ ∞
κy2

mp (w) dw

with m1 (w) = exp (−w/2)M

(
λ+ 5

4
,
5

2
, w

)
m2 (w) = exp (−w/2)U

(
λ+ 5

4
,
5

2
, w

)
mp (w) = m2 (w)

∫ w

0

m1 (w′) dw′ +m1 (w)

∫ ∞
w

m2 (w′) dw′

cp =
λκ1/2Γ

(
λ+5

4

)
8Γ
(

5
2

) c̃

Where M and U are the confluent hypergeometric functions (Kummer functions). The 4 integration
constants are subject to the the condition remaining finite for z →∞ and symmetry implies A′1 = A′′′1 =
0 . The logarithmic derivative of the inner solution is

lim
y→∞

A′1 (y)

A1 (y)
=

πλκ1/2Γ
(
λ+5

4

)
(1− λ2) Γ

(
λ+1

4

)
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Dispersion relation:

equalizing the asymptotic logarithmic derivativesleads to the dipersion relation:

lim
y→∞

A′1a (y)

A1a (y)
=

A′1o (0)

A1o (0)
or

q̃2 =

√
λ

π

(
1− k2

) (
1− λ2

) Γ
(
λ+1

4

)
Γ
(
λ+1

4

)
with λ = q3/2S1/2/k = q̃3/2/k̃

q̃ = qS1/2 k̃ = kS1/4

In the scaling of q̃ and k̃ the maximum growth rate occurs if these are of order unity, i.e., qmax =
O
(
S−1/2

)
. More precisely the maximum is given by λ0 = 0.36 and q̃0 = 0.62 leading to

kmax = 1.36 · S−1/4

qmax = 0.62 · S−1/2

We note that the width of the ε layer is given by

ε =
1√
κ

=
q1/4

k1/2S1/4
= 0.7S−1/4

finally we can expand this dispersion relation for S−1/4 � k ≤ 1 to obtain

q = 0.95
(
1− k2

)4/5
S−3/5k−2/5
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5.1.4 Collisionless Tearing Mode

Microscopic kinetic instabilities can be studied in the same framework that we derived for collisionless
plasma waves. The only difference to the wave application is the a different sign in the imaginary part
of ω. These instabilities require a source of free energy tha can drive the instability. For many micro-
instbilities this source is a relative drift of different particle populations. These drifts can be also within
one population for instance if there are two electron beams which move with different velocities. Other
common sources are particle anisotropies which can generate so-called mirror and firhose modes. Most
of these instabilities can be considered in a two fluid or anisotropic fluid approximation, however, the
inclusion of the full kinetic effects require to start with a kinetic plasma description.

Many of the macro instabilities also have a kinetic counterpart. Ususally these lead to significant mod-
ification only if the wave length of the underlying mode is comparable to kinetic scales ()gyro scale or
Debye length). A significant difference in the growth is present for the tearing mode. Note, that the re-
sistive tearing mode is stricly applicable only in the case of sufficient collisions whil many space plasmas
are collisionless.

To examine the propoerties of the collisionless tearing mode we start again from the Harris sheet where
we assume ∂/∂z = 0 and exact neutrality φ = 0. Here the constants of motion for the particle species s
are

Hs = msv
2/2 + qsφ and Ps = msvz + qsA0

where Ps and A0 are the z components of the conjugate momentum and of the vector potential. Any
function of the constants of motion fs (r,v) = Fs (Hs, Ps) solves the collisionless Boltzmann equation.
As outlined before the equilibrium distributions

Fs (Hs, Ps) = cs exp (−αsHs − βsPs)

The solution for this configuration is

A0 = Â0 ln cosh
y

L

B0 = B̂0 tanh
y

L
ex

j0 = −ĵ0 cosh−2 y

L

with

L = λi
vthi
|wi|

√
2Ti

Ti + Te

Â0 = −2
kBTi
ewi

B̂0 = −sgn (wi)
√

2µ0 (pi0 + pe0)

ĵ0 = B̂0/L0
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and ps0 = n0kBTs and vthi =
√
kBTi/mi. Following the derivation for kinetic wave we start from the

collisionless Boltzmann equation for a distribution function of the form f (x, y, vx, vy, P, t) where P is a
constant of motion

df

dt
=
∂f

∂t
+
dx

dt

∂f

∂x
+
dy

dt

∂f

∂y
+
dvx
dt

∂f

∂vx
+
dvy
dt

∂f

∂vy
= 0

for each particle species. Using the equations of motion for the particles

df

dt
=

∂f

∂t
+
dx

dt

∂f

∂x
+
dy

dt

∂f

∂y
+

q

m

(
vyBz −

P − qA
m

By

)
∂f

∂vx

+
q

m

(
P − qA
m

Bx − vxBz

)
∂f

∂vy
= 0

where we replaced mwz = P − qA. We now linearize this equation using f = F (H,P ) + f1

df1

dt
=

q

m

∂F

∂H

P − qA
m

(vyBx1 − vxBy1)− q2

m

∂F

∂H
BxvyA1

= − d

dt

[
q

m

∂F

∂H
(P − qA)A1

]
+

q

m

∂F

∂H
(P − qA)

∂A1

∂t

Similar to the electromagnetic wave discussion we can formally integrate this to obtain:

f1 = − q

m

∂F

∂H
(P − qA)A1 +

q

m

∂F

∂H

∫ t

−∞
(P − qA)′

(
∂A1

∂t

)′
dt

This integral has to be integrated over the unperturbed particle orbits. A critical parameter for these
orbits is given by the gyromotion inside the Harris sheet close to the center of the current sheet one has to
distinguish between the regular drifting particle motion and a chaotic particle motion for particles which
cross the center of the current sheet. It is relatively straightforward to particles located outside of the
center by a distance d =

√
2Lrg undergo just the regular ∇B drift while those inside of this carry out a

chaotic motion.

Following we assume d � L. For particles with a regular dift the variation of the integrant is averaging
out and we can neglect this integrant for the perturbaed distribution function. For |y| < d the average
velocity is approximately the thermal velocity, in which case one can approximate the integral by taking
P − qA in front of the integral. Using perturbations of the form A1 = Â1 (y) exp (γt+ ikx) where
x′ = x+ vx (t′ − t). Now the perturbed distribution is

f1 = − q

m

∂F

∂H
(P − qA)A1 + γ

q

m

∂F

∂H

P − qA
γ + ikvx

A1

where it was also assumed that Â1 ≈ constant inside of d. It is also reminded that we have a perturbed
distribution for each particle species where we had ommitted the index s for convenience. Now the
perturbed current density is
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jz1 =
∑
s

qs

∫
P − qsA
ms

fs1dvxdvyd
P

m
−
∑
s

q2
s

ms

A1

∫
Fsdτdvxdvyd

P

m

Substituting the perturbed distribution function yields

j1z =

{
∂j0
∂A
A1 + γA1

∑
s
qs
ms

∫
∂Fs

∂Hs

(P−qsA)2

γ+ikvx
dvxdvyd

P
m

y < d
∂j0
∂A
A1 y ≥ d

This equation is the same for the outer solution from the resistive tearing mode such that the logaritmic
derivative of the outer solution is

A′1 (0)

A1 (0)
=

1− k2

k

The integral for the inner solution is

∫
∂Fs
∂Hs

(P − qsA)2

γ + ikvx
dvxdvyd

P

m
= −

(
π

2kBTs

)1/2
m

3/2
s n0

k cosh2 (y/L)

(
1 + 2

r2
g

L2

)
In this evaluation we assumed the small growth rate limit for the plasma dispersion function. Now the
perturbed current density is

jz1 =
2A1

µ0L2 cosh2 (y/L)

[
1− γM

(
1 + 2

r2
g

L2

)]
, M =

π1/2L2

2r2
gkvt

To obtain the dispersion relation we need to solve Ampere’s law

d2A1

dy2
−

(
k2 −

2− 2γM
(
1 + 2r2

g/L
2
)

L2 cosh2 (y/L)

)
A1 = 0

The dominant term in this equation is the γM term such that this is again a boundary layer problem
where the inner solution is important on the scale ϑ = y

√
d/L. In this expansion we need to solve

d2A1

dy2
=

2γM

L2
A1

This has a straightforward solution and keeping in mind the symmetry condition dA1/dz = 0 we can
match the logarithmic derivatives to obtain

γ = c0Ω0

(rg
L

)5/2 (
1− k2L2

)
where c0 is a constant close to 1. This result has been derived for the condition of d� L. For a slightly
modified problem one can actully drop this approximation to obtain the growth rate for a thin current
sheet with d ≈ L
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γ =
Ω0√
π

(rg
L

)3 kL (2 + kL) (1− kL)

1 + 2r2
g/L

2

which yields a much larger growth rate than the thick current sheet with d/L� 1.

5.2 Two-Stream Instability

Starting from the equations for electrons, ions and Poisson equation and using the plane wave approach
one obtains

(ω − kV0)ne1 = kn0ue

(ω − kV0)ue = kc2
se

ne1
n0

− i e
me

E

ωni1 = kn0ui

ωui = kc2
si

ni1
n0

+ i
e

mi

E

ikE =
e

ε0
(ni1 − ne1)

From the continuity equations we obtain

ue =
ω − kV0

kn0

ne1

ui =
ω

kn0

ni1

which can be substituted in the momentum equations

(
(ω − kV0)2

k2
− c2

se

)
k
ne1
n0

= −i e
me

E(
ω2

k2
− c2

si

)
k
ni1
n0

= i
e

mi

E

or

ne1 = −ien0

me

(
(ω − kV0)2 − k2c2

se

)−1
kE

ni1 = i
en0

mi

(
ω2 − k2c2

si

)−1
kE

Substitution into Poisson’s equation yields

ikE = ikE

[
e2n0

ε0mi

(
ω2 − k2c2

si

)−1
+
e2n0

ε0me

(
(ω − kV0)2 − k2c2

se

)−1
]
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or

1 = ω2
pi

(
ω2 − k2c2

si

)−1
+ ω2

pe

(
(ω − kV0)2 − k2c2

se

)−1

Other micro-instabilities


