18 Gradient and curvature drift

(a) A single proton has a parallel and perpendicular energy of 10 keV. Compute $(\mathbf{B} \times \nabla B) / B^3$ and determine the instantaneous curvature and gradient drift velocity for the Earth's dipole field in the magnetic equator at a radial distance of 5 R_E

(b) Consider an isotropic Maxwell plasma distribution for protons with a temperature $T = 10^8$ K in the equatorial plane. Evaluate the instantaneous bulk (average) velocity of the distribution at a radial distance of 5 $R_{\rm E}$ based on the gradient and curvature drift.

Solution:

(a) Gradient and curvature drifts in the absence of electric currents (dipole field):

$$\mathbf{v}_{\nabla} = \frac{mv_{\perp}^2}{2qB^3} (\mathbf{B} \times \nabla B)$$
$$\mathbf{v}_C = \frac{mv_{\parallel}^2}{qB^3} \mathbf{B} \times (\nabla B)$$

With the magnetic field $(B_E = 3.11 \cdot 10^{-5} \text{T})$

$$B_r = -2B_E R_E^3 \frac{\cos \theta}{r^3}$$
$$B_\theta = -B_E R_E^3 \frac{\sin \theta}{r^3}$$
$$B = \frac{B_E R_E^3}{r^3} \left(1 + 3\cos^2 \theta\right)^{1/2}$$

In the equatorial plane ∇B has only a radial component:

$$\nabla B = \partial B / \partial r \, \mathbf{e}_r = -3 \frac{B_E R_E^3}{r^4} \, \mathbf{e}_r = -3 \frac{B}{r} \, \mathbf{e}_r$$

$$\frac{1}{B^3} \left(\mathbf{B} \times \nabla B \right)_{\theta=90^\circ} = -3 \frac{B}{r} \frac{B_\theta}{B^3} \left(\mathbf{e}_\theta \times \mathbf{e}_r \right)$$
$$= -\frac{3}{r} \frac{B_E R_E^3}{r^3} \left(\frac{r^3}{B_E R_E^3} \right)^2 \mathbf{e}_\phi = -\frac{3r^2}{B_E R_E^3} \mathbf{e}_\phi$$

Gradient drift of an individual particle with $mv_{\perp}^2/2 = 10 keV$:

$$\mathbf{v}_{\nabla} = \frac{mv_{\perp}^2}{2qB^3} \left(\mathbf{B} \times \nabla B \right) = -\frac{mv_{\perp}^2}{2q} \frac{3r^2}{B_E R_E^3} \mathbf{e}_{\phi}$$

= $-\frac{10^4 e}{e} \frac{3 \cdot 5^2}{3.11 \cdot 10^{-5} \cdot 6.4 \cdot 10^6} \mathbf{e}_{\phi} \, ms^{-1} = -10^3 \frac{3 \cdot 5^2}{3.11 \cdot 6.4} \mathbf{e}_{\phi} \, ms^{-1}$
= $-10^3 \frac{3 \cdot 5^2}{3.11 \cdot 6.4} \mathbf{e}_{\phi} \, ms^{-1} = 3.77 \, kms^{-1}$

Curvature drift of an individual particle with $m v_{\parallel}^2/2 = 10 keV$:

$$\mathbf{v}_{C} = \frac{mv_{\parallel}^{2}}{qB^{3}} \left(\mathbf{B} \times \nabla B \right) = -2\frac{mv_{\parallel}^{2}}{2q} \frac{3r^{2}}{B_{E}R_{E}^{3}} \mathbf{e}_{\phi} = 7.54 \, kms^{-1}$$

such that the combined gradient and curvature drift is $\mathbf{v}_{D,10keV} = 11.3 \, kms^{-1}$. (b) Gradient and curvature drift for a Maxwell distribution with $T = 10^8 K$: Gradient drift (using z along the parallel direction):

$$\mathbf{u}_{\nabla} = \frac{1}{n} \int^{\infty} \left(\frac{m v_{\perp}^2}{2q B^3} \mathbf{B} \times \nabla B \right) f d^3 v = \frac{1}{2nq} \frac{\mathbf{B} \times \nabla B}{B^3} \int^{\infty} m \left(v_x^2 + v_y^2 \right) f d^3 v$$

From homework problem 8 we have for a Maxwell distribution $m \int^{\infty} v_x^2 f d^3 v = m \int^{\infty} v_y^2 f d^3 v = nk_BT$ such that

$$\mathbf{u}_{\nabla} = \frac{1}{2nq} \frac{\mathbf{B} \times \nabla B}{B^3} 2nk_B T = \frac{k_B T_{\perp}}{q} \frac{\mathbf{B} \times \nabla B}{B^3}$$
$$= -\frac{k_B T_{\perp}}{q} \frac{3L^2}{B_E R_E} \mathbf{e}_{\phi}$$

Curvature drift:

$$\mathbf{u}_{C} = \frac{1}{n} \int_{-\infty}^{\infty} \left(\frac{m v_{\parallel}^{2}}{q B^{3}} \mathbf{B} \times \nabla B \right) f d^{3} v = \frac{1}{nq} \frac{\mathbf{B} \times \nabla B}{B^{3}} \int_{-\infty}^{\infty} m v_{z}^{2} f d^{3} v$$
$$= \frac{k_{B} T_{\parallel}}{q} \frac{\mathbf{B} \times \nabla B}{B^{3}} = -\frac{k_{B} T_{\parallel}}{q} \frac{3L^{2}}{B_{E} R_{E}} \mathbf{e}_{\phi}$$

Such that the drifts are identical for the same parallel and perpendicular temperatures:

$$\mathbf{u}_{\nabla} = \mathbf{u}_{C} = -\frac{k_{B}T}{q} \frac{3L^{2}}{B_{E}R_{E}} \mathbf{e}_{\phi}$$

= $-\frac{1.38 \cdot 10^{-23} 10^{8} \cdot 3}{1.6 \cdot 10^{-19} 3.11 \cdot 10^{-5} \cdot 6.4 \cdot 10^{6}} L^{2} \mathbf{e}_{\phi} \mathrm{ms}^{-1} = -130 L^{2} \mathbf{e}_{\phi} \mathrm{ms}^{-1}$
= $-3.25 \, km s^{-1} \mathbf{e}_{\phi}$

and for the combined drift $\mathbf{u}_D = \mathbf{u}_{\nabla} + \mathbf{u}_C = -6.5 \, km s^{-1} \mathbf{e}_{\phi}$

19. Loss cone distribution

Consider an initial Maxwell distribution function $f(v) = n \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{mv^2}{2k_B T}\right)$ with density n and temperature T in the equatorial plane.

(a) For a given loss cone with angle α determine the fraction of particles lost from the isotropic distribution function. Determine the number density \tilde{n} for the new distribution function \tilde{f} (distribution without particles in the loss cone; hint: Represent the distribution in velocity space in spherical velocity coordinates.).

(b) Compute the parallel and perpendicular energy density for the distribution function with the loss cone as a function of temperature T, density n, and angle α .

(c) What is the angle α for the loss cone if the energy ratio is $W_{\parallel}/W_{\perp} = 1/4?$

Solution:

(a) For a given loss cone with angle α determine the fraction of particles lost from the originally isotropic distribution function. Determine the number density \tilde{n} for the new distribution function \tilde{f} . With

$$\int_0^\infty x^2 \exp\left(-a^2 x^2\right) dx = \frac{\sqrt{\pi}}{4a^3}$$

and using sperical coordinates for the velocity integration the number of particles in the loss cone is

$$n_{L} = 2 \int_{0}^{2\pi} d\varphi \int_{0}^{\alpha} \sin \vartheta d\vartheta \int_{0}^{\infty} v^{2} f(v) dv$$

$$= 4\pi \left[-\cos \alpha \right]_{0}^{\alpha} n \left(\frac{m}{2\pi k_{B}T} \right)^{3/2} \int_{0}^{\infty} dv v^{2} \exp \left(-\frac{mv^{2}}{2k_{B}T} \right)$$

$$= 4\pi \left(1 - \cos \alpha \right) n \left(\frac{m}{2\pi k_{B}T} \right)^{3/2} \frac{\sqrt{\pi}}{4} \left(\frac{2k_{B}T}{m} \right)^{3/2}$$

where n is the original number of particles. Total Number of Particles in the loss cone:

$$n_L = n \left(1 - \cos \alpha \right)$$

Particles remaining in the distribution: $\tilde{n} = n - n_L = n \cos \alpha$

Fraction of particles lost: $r = n_L/n = 1 - \cos \alpha$

The loss cone distribution function (= distribution function with the loss cone) does actually not change outside of the loss cone but should be re-written in the form

$$\tilde{f}(\vartheta, v) = \frac{\tilde{n}}{\cos \alpha} \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{mv^2}{2k_B T}\right) S(\vartheta, \alpha)$$

to account for the normalization to \tilde{n} . Here $S(\vartheta, \alpha)$ is a step function with satisfies $S(\vartheta, \alpha) = 1$ for $\alpha \leq \vartheta \leq \pi - \alpha$.

(b) Parallel and perpendicular energy:

With

$$\int_0^\infty x^4 \exp\left(-a^2 x^2\right) dx = \frac{1}{2a^2} \int_0^\infty 3x^2 \exp\left(-a^2 x^2\right) dx = 3\frac{\sqrt{\pi}}{8a^5}$$

and $v_{\parallel}=v\cos\vartheta$ and $v_{\perp}=v\sin\vartheta$ the energy densities are

$$w_{\parallel} = \int_{0}^{2\pi} d\varphi \int_{\alpha}^{\pi-\alpha} \sin\vartheta d\vartheta \int_{0}^{\infty} \frac{m}{2} v_{\parallel}^{2} \tilde{f}(v) v^{2} dv$$

$$= 2\pi \frac{m}{2} \frac{\tilde{n}}{\cos \alpha} \left(\frac{m}{2\pi k_{B}T}\right)^{3/2} \int_{\alpha}^{\pi-\alpha} \sin\vartheta \cos^{2}\vartheta d\vartheta \int_{0}^{\infty} v^{4} \exp\left(-\frac{mv^{2}}{2k_{B}T}\right) dv$$

$$= \pi m \frac{\tilde{n}}{\cos \alpha} \left(\frac{m}{2\pi k_{B}T}\right)^{3/2} \frac{-\cos^{3}\vartheta}{3} \Big|_{\alpha}^{\pi-\alpha} \frac{3\sqrt{\pi}}{8} \left(\frac{2k_{B}T}{m}\right)^{5/2}$$

$$= m \frac{\tilde{n}}{\cos \alpha} \frac{2\cos^{3}\alpha}{3} \frac{3}{8} \frac{2k_{B}T}{m} = \frac{1}{2} \tilde{n} k_{B}T \cos^{2}\alpha$$

$$w_{\perp} = \int_{0}^{2\pi} d\varphi \int_{\alpha}^{\pi-\alpha} \sin\vartheta d\vartheta \int_{0}^{\infty} \frac{m}{2} v_{\perp}^{2} \tilde{f}(v) dv$$

$$= 2\pi \frac{m}{2} \frac{\tilde{n}}{\cos\alpha} \left(\frac{m}{2\pi k_{B}T}\right)^{3/2} \int_{\alpha}^{\pi-\alpha} \sin^{3}\vartheta d\vartheta \int_{0}^{\infty} v^{4} \exp\left(-\frac{mv^{2}}{2k_{B}T}\right) dv$$

$$= \pi m \frac{\tilde{n}}{\cos\alpha} \left(\frac{m}{2\pi k_{B}T}\right)^{3/2} \left[-\cos\vartheta + \frac{\cos^{3}\vartheta}{3}\right]_{\alpha}^{\pi-\alpha} \frac{3\sqrt{\pi}}{8} \left(\frac{2k_{B}T}{m}\right)^{5/2}$$

$$= m \frac{\tilde{n}}{\cos\alpha} 2 \left[\cos\alpha - \frac{\cos^{3}\alpha}{3}\right] \frac{3}{8} \frac{2k_{B}T}{m} = \frac{3}{2} \tilde{n} k_{B}T \left(1 - \frac{1}{3} \cos^{2}\alpha\right)$$

The average energies per particle (density for the losscone distribution is \tilde{n}) are

$$W_{\parallel} = \frac{1}{2}k_BT\cos^2\alpha$$
$$W_{\perp} = \frac{3}{2}k_BT\left(1 - \frac{1}{3}\cos^2\alpha\right)$$

Note anothe way to express this would be through parallel and perpendiculat 'effective' temperature defined through $p_{\perp} = \tilde{n}k_BT_{\perp}$ and $p_{\parallel} = \tilde{n}k_BT_{\parallel}$ with $p_{\perp} = w_{\perp}$ and $p_{\parallel} = 2w_{\parallel}$ such that $T_{\perp} = \frac{3}{2}T\left(1 - \frac{1}{3}\cos^2\alpha\right)$ and $T_{\parallel} = T\cos^2\alpha$.

(c) Angle α for the loss cone if the energy ratio is $W_{\parallel}/W_{\perp} = 1/4?$

$$W_{\parallel}/W_{\perp} = \frac{\cos^2 \alpha}{3 - \cos^2 \alpha} = \frac{1}{4}$$

such that $\cos^2 \alpha = 3/5$ or $\alpha = 39.2^{\circ}$.

20 Particle drifts

(a) What perpendicular particle energy is required to compensate the co-rotational drift in the Earth's magnetosphere through the gradient B drift at the magnetic equator? Sketch or plot the required perpendicular velocity as a function of r. What is this energy for particles at L = 4, 6, and 8?

(b) Express the perpendicular energy through the magnetic moment. Assume that the particle is on field lines with L = 8 and is mirrored just above the ionosphere. What are the latitude of the mirror point and what is the parallel energy of the particle? What is wrong with this problem?

Solution:

(a) Gradient drift and angular velocity:

$$\mathbf{v}_{\nabla} = \frac{mv_{\perp}^2}{2qB^3} \left(\mathbf{B} \times \nabla B \right) = -\frac{mv_{\perp}^2}{2q} \frac{3r^2}{B_E R_E^3} \mathbf{e}_{\phi}$$
$$\omega_{\nabla} = \frac{v_{\nabla}}{r} = -\frac{mv_{\perp}^2}{2q} \frac{3r}{B_E R_E^3} = -\frac{mv_{\perp}^2}{4\pi q} \frac{3L}{B_E R_E^2}$$

Corotational angular velocity with $T_d = 1$ day:

$$\omega_{cor} = \frac{2\pi}{T_d}$$

such that

$$\frac{mv_{\perp}^{2}}{4\pi q} \frac{3L}{B_{E}R_{E}^{2}} = \frac{2\pi}{T_{d}}$$

$$w_{\perp} = \frac{mv_{\perp}^{2}}{2} = q\frac{2\pi}{T_{d}}\frac{B_{E}R_{E}^{2}}{3L}$$

$$= e\frac{2\pi}{24 \cdot 3600}\frac{3.11 \cdot 10^{-5} \cdot 6.4^{2} \cdot 10^{12}}{3L} =$$

$$= \frac{e}{L}\frac{2\pi}{2.4 \cdot 3.600}\frac{3.11 \cdot 6.4^{2} \cdot 10^{3}}{3} = \frac{30.9keV}{L}$$

which corresponds to 7.7 keV, 5.1 keV, and 3.9 keV for L = 4, 6, and 8.

(b) Magnetic moment in the equatorial plane and at the mirror point:

$$\mu = \frac{mv_{\perp eq}^2}{2B_{eq}} = \frac{mv_{\perp m}^2}{2B_m}$$

such that

$$\frac{mv_{\perp m}^2}{2} = \frac{mv_{\perp eq}^2}{2} \frac{B_m}{B_{eq}}$$

with

$$B = B_E \frac{R_E^3}{r^3} \left(1 + 3\sin^2\lambda\right)^{1/2} = B_E \frac{R_E^3}{r^3} \left(4 - 3\cos^2\lambda\right)^{1/2}$$

and
$$r = r_{eq}\cos^2\lambda$$

such that the mirror latitude is $\lambda_m = \arccos \sqrt{r_m/r_{eq}} = \arccos \sqrt{1/L} = 69.3^\circ$. The magnetic field magnitude along the field line with the equatorial crossing point $r_{eq} = LR_E$ is

$$B = B_E \frac{R_E^3}{r^3} \left(4 - 3\frac{r}{r_{eq}}\right)^{1/2}$$

such that
$$B_{eq} = B_E \frac{1}{L^3}$$

$$B_{m,1R_E} = B_E \left(4 - 3\frac{1}{L}\right)^{1/2}$$

and the perpendicular energy at the mirror point for L = 8 is

$$\frac{mv_{\perp m}^2}{2} = \frac{mv_{\perp eq}^2}{2} \frac{B_m}{B_{eq}} = \frac{mv_{\perp eq}^2}{2} L^3 \left(4 - 3\frac{1}{L}\right)^{1/2}$$
$$= 974 \frac{mv_{\perp eq}^2}{2} = 3.797 MeV$$

Energy conservation implies that the total energy in the equatorial plane is the same as at the mirror point such that the parallel energy is

$$w_{\parallel} = \frac{mv_{\perp m}^2}{2} - \frac{mv_{\perp eq}^2}{2} = 973 \frac{mv_{\perp eq}^2}{2} = 3.794 MeV$$

The problem assumed a particle for which the gradient drift in the equator compensates corotation. However, a particle that mirrors just above the ionosphere has a parallel energy that is almost a 1000 times the perpendicular energy in the equatorial plane. For such a particle the curvature drift is about a 1000 times faster than the gradient drift in the equator such that the particle actually does not compensate corotation.