Magnetospheric Physics - Homework solution, 2/28/2014

18 Gradient and curvature drift

(a) A single proton has a parallel and perpendicular energy of 10 keV. Compute (B x VB) /B?
and determine the instantaneous curvature and gradient drift velocity for the Earth’s dipole field in
the magnetic equator at a radial distance of 5 Rp

(b) Consider an isotropic Maxwell plasma distribution for protons with a temperature 7" = 108 K
in the equatorial plane. Evaluate the instantaneous bulk (average) velocity of the distribution at a
radial distance of 5 Ry, based on the gradient and curvature drift.

Solution:

(a) Gradient and curvature drifts in the absence of electric currents (dipole field):
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In the equatorial plane V B has only a radial component:

BrpR? B
E4Eer:—3—e7a
r r

VB =08B/ore, = —3

1 B By
? (B X VB)Q:QOO = —37§ (eg X er)
_ _3BgRy (1 ? _ 3r? o
r 1\ BpR3 BpR3, ¢

Gradient drift of an individual particle with mv? /2 = 10keV:
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Curvature drift of an individual particle with mv|2| /2 = 10keV:
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such that the combined gradient and curvature drift is vp jokey = 11.3 kms™1
(b) Gradient and curvature drift for a Maxwell distribution with 7' = 103K :
Gradient drift (using z along the parallel direction):
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From homework problem 8 we have for a Maxwell distribution m [*° v fd*v = m [* v} fd*v =
nkpgT such that
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Curvature drift:
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Such that the drifts are identical for the same parallel and perpendicular temperatures:
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19. Loss cone distribution

. .. e e . 3/2 2 . .
Consider an initial ngwell dlstrlbptlon function f(v) = n (%ZLBT) exp (— ;Z;T) with density
n and temperature 7' in the equatorial plane.

(a) For a given loss cone with angle o determine the fraction of particles lost from the isotropic
distribution function. Determine the number density n for the new distribution function f (dis-
tribution without particles in the loss cone; hint: Represent the distribution in velocity space in
spherical velocity coordinates.).

(b) Compute the parallel and perpendicular energy density for the distribution function with the
loss cone as a function of temperature 7', density n, and angle a.

(c) What is the angle « for the loss cone if the energy ratio is W) /W, = 1/4?

Solution:

(a) For a given loss cone with angle o determine the
fraction of particles lost from the originally isotropic BAv,
distribution function. Determine the number density n e
for the new distribution function f .With —
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and using sperical coordinates for the velocity integra-
tion the number of particles in the loss cone is
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where n is the original number of particles. Total Number of Particles in the loss cone:
ny =n(l —cosa)
Particles remaining in the distribution: 7 =n — ny = ncos«

Fraction of particles lost: 7 = ny/n =1 — cos «

The loss cone distribution function (= distribution function with the loss cone) does actually not
change outside of the loss cone but should be re-written in the form
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to account for the normalization to 7. Here S(1J, «) is a step function with satisfies S(9, ) = 1
fora<d<7m-—aqa.



(b) Parallel and perpendicular energy:
With
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The average energies per particle (density for the losscone distribution is n) are
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Note anothe way to express this would be through parallel and perpendiculat ’effective’ temper-
ature defined through p, = nkgT, and p; = nkpT) with p, = w, and p; = 2w such that
T, =3T (1 — 3 cos? a) and T} = T cos® av.

(¢) Angle o for the loss cone if the energy ratio is W /W, = 1/4?
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such that cos? @ = 3/5 or a = 39.2°.



20 Particle drifts

(a) What perpendicular particle energy is required to compensate the co-rotational drift in the
Earth’s magnetosphere through the gradient B drift at the magnetic equator? Sketch or plot the
required perpendicular velocity as a function of r. What is this energy for particles at L = 4, 6, and
8?7

(b) Express the perpendicular energy through the magnetic moment. Assume that the particle is
on field lines with L = 8 and is mirrored just above the ionosphere. What are the latitude of the
mirror point and what is the parallel energy of the particle? What is wrong with this problem?

Solution:

(a) Gradient drift and angular velocity:
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which corresponds to 7.7 keV, 5.1 keV, and 3.9 keV for L = 4, 6, and 8.

(b) Magnetic moment in the equatorial plane and at the mirror point:
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with
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such that the mirror latitude is \,,, = arccos y/r,,/re, = arccos /1/L = 69.3°.

The magnetic field magnitude along the field line with the equatorial crossing point r., = LR is
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and the perpendicular energy at the mirror point for L = 8 is
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Energy conservation implies that the total energy in the equatorial plane is the same as at the mirror
point such that the parallel energy is
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The problem assumed a particle for which the gradient drift in the equator compensates corotation.
However, a particle that mirrors just above the ionosphere has a parallel energy that is almost a
1000 times the perpendicular energy in the equatorial plane. For such a particle the curvature drift
is about a 1000 times faster than the gradient drift in the equator such that the particle actually does
not compensate corotation.



