
Magnetospheric Physics - Homework solution, 3/07/2014

21. Energy conservation

Derive the conservative form of the energy equation in MHD.
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MHD equations
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The internal energy equation is already available. For the bulk flow we obtain
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Magnetic energy:
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And the internal energy:
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Adding the three equations:
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and all other terms on the rhs cancel. Combining the remaining terms and re-arranging:
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22. Sound waves

a) Reduce the MHD equations to a non-magnetic fluid. Determine the equilibrium conditions.

b) Why does γ =∞ correspond to incompressibility (γ is the ratio of specific heats)?

c) Assume a homogeneous system (equilibrium without flow) and derive the dispersion relation
by linearizing the equations and assuming waves of the form f (x, t) = f0 exp {i (kx− ωt)}. The
corresponding waves are sound waves. What is the wave speed?

Solution: (a) Starting from the MHD equations (1) - (6) in Problem 19 and deleting all terms
which contain magnetic field, electric field, and current density yields:
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Equilibrium conditions: ∂/∂t = 0 and u = 0 yields ∇p = 0 or p = const. There is no condition
for ρ or T but they have to satisfy the ideal gas law p = nkBT .

(b) In the limit of γ → ∞ the last term of the pressure equation requires ∇ · u → 0 otherwise
the term would diverge and pressure changes become infinitely large. Going back to the continuity
equation we obtain with∇ · ρu = u · ∇ρ+ ρ∇ · u such that
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and dρ/dt = 0 means there is no density change along the path of the fluid element.
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(c) With ρ0 = const, p0 = const, and u0 = 0 and applying a linearization ρ = ρ0 + ρ1 where ρ1
is a small perturbation and all nonlinear term in the perturbations are neglected. Also we assume
u1 = uex because the medium is isotropic. Note, since u0 = 0 we can omit the index 1 for the
velocity:
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We can now assume perturbations of the form f1 = f̂1 exp (iωt− ikx) such that one can replace
time derivatives with ∂/∂t ↪→ iω and spatial derivatives with ∂/∂x ↪→ −ik. This leads to a set
of algebraic equations for the relation of ω and k. The expression ω (k) is the dispersion relation
and ω/k is the phase velocity:

iωρ1 = iρ0ku

iωρ0u = ikp1

iωp1 = iγp0ku

Division by i and substitution of equ. 3 into 2 yields: ω2ρ0u = γp0k
2u or ω2/k2 = γp0/ρ0 = c2s

for the dispersion relation.

Alternatively one can make this step a bit later and take first the time derivative of the 2nd equation
and substitute the pressure equation:
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and with the definition of the speed of sound c2s = γp0/ρ0 on obtains ∂2u/∂t2 − c2s∂2u/∂x2 = 0.
This is the wave equation for sound waves. Any function of the type f (x, t) = h (x± cst) solves
the above equation.



23. Simulation of sound waves

The compressed file mhd1d_code on the class website contains a one-dimensional MHD simula-
tion code, files to run the program, an idl program to visualize results, a readme file that explains
how to run the code, and a few page of background on the MHD simulation. The one-dimensional
MHD code contains various initial conditions. Make yourself familiar with the program by run-
ning it for the case of a sound wave (the preset initial condition 3 -> subroutine initc3). Compile
and run the program in the distributed version. Examine the results using the provided idl program
(Note the system is periodic such that the wave that exits to the right re-enters from the left). (1) Is
it possible to get rid of the oscillations at later times by increasing one of the viscosity parameters
in m1in (ivisrho, ivisv, ivisu)? (2) What happens when you change the wave velocity amplitude
to 0.01 or the density to 4 (in the program)? (3) How large can you make the time step before
you encounter an instability? Note that you may have to use a shorter run (smaller iend) and more
frequent outputs (smaller iout) to see this. Report your results with selected plots that document
your findings and attempt an interpretation of your findings.

Solution:

(1) Case 1: The following 2 figures show results with the default values for the sound wave (initial
condition 3) for the times 0, 150. The time step is 0.05.

After about t = 100 the wave steepens much and develops increasing oscillations. Wave steep-
ening is often the case when wave amplitudes are large such that the wave modifies the speed of
sound (travels faster in regions of higher pressure and sound speed and slower in region of lower
pressure).

Case 2: Here we have increased the viscosity parameter for pressure to 0.1 (left) and to 0.3 (right)
for the same time shown in case 1. The increase in the viscosity (diffusion) clearly damps the
oscillations where 0.1 is almost sufficient and with a value of 0.3 the oscillations are gone. Note
that the chosen viscosity does not alter the propagation of the sepwave noticably.



(2) Cases 3 and 4: Decreasing the amplitude of the wave to 0.01 (below left) leads to a much
slower evolution of the wave steepening consistent with the explanation given for case 1. A larger
density of 4 leads to a larger absolute density perturbation and a smaller velocity perturbation. The
pressure perturbation appears the same. The wave travels slower (visible clearly in the animation)
and steepening is also a bit slower. However steepening appears to be proportional to the distance
travelled (for everything else fixed).



(3) Case 5: Increasing the time step leads to an instability. The next plot show the wave for a time
step of 0.098. For a slightly smaller time (0.97) the wave develops oscillations associated with the
step a bit earlier but the oscillations do not grow large whereas for time step 0.98 oscillation occur
even without the wave steepening and grow fast in time.


