
Chapter 9

Convection Equations

A physical system is usually described by more than one equation. Typical is the system of equa-
tions for an ideal gas or fluid. This requires equation for density ρ , velocity u, and pressure p. In
one dimension these equations are

∂ρ

∂ t
+

∂ρu
∂x

= 0

∂ρu
∂ t

+
∂ρuu

∂x
= −∂ p

∂x
∂ p
∂ t

+
∂ pu
∂x

= (γ−1) p
∂u
∂x

with γ = 5/3 for adiabatic changes of the state of a system and u being the x component of the
velocity. This system of equations is hyperbolic and the equations are of convection type. The
following sections will address the discretization of convection equation and discuss properties of
the discretization such as stability and accuracy of the respective schemes. An important physical
aspect of the dynamics of fluids and gases is dispersion and diffusion. However, the introduction
of a numerical approximation implies the introduction of numerical dispersion and diffusion. This
aspect is examined in section 2. Further section in this chapter will consider extensions of a simple
convection equations such as two and more dimensions, nonlinear transport, systems of equations,
and steady state systems.

9.1 Linear convection equations

Let us consider the very simple one-dimensional equation

∂ f
∂ t

+u
∂ f
∂x

= 0

where for simplicity u is assumed to be known and constant. The solution to this equation is
simple. Assuming any initial condition f ((x, t1 = 0) = F (x) the subsequent solution is given by
the transport of the initial profile, i.e., f(x, t) = F (x−ut).
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Figure 9.1: Illustration of the transport of an initial profile by a constant velocity u.

9.1.1 Simple explicit methods

FTCS scheme

In terms of a numerical scheme it would appear that the FTCS scheme is the simplest approach
yielding

f n+1
j − f n

j

∆t
+

u
2∆x

(
f n

j+1− f n
j−1
)

= 0

which gives an explicit equation for f n+1
j

f n+1
j = f n

j −
1
2

c
(

f n
j+1− f n

j−1
)

with c = u∆t/∆x. The problem with this approach is that the von Neumann stability analysis yields
an amplification factor of

g = 1− icsin(k∆x)

or for the square of the magnitude

|g|2 = 1+ c2 sin2 (k∆x)

which is always greater than 1 except for the utterly useless value of c = 0 implying ∆t = 0. Thus
although simple the FTCS scheme is always unstable for the convection equation.
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Upwind scheme and the CFL condition

Another differencing attempt can be made using upwind
spatial differencing

f n+1
j − f n

j

∆t
+

u
∆x

(
f n

j − f n
j−1
)

= 0

yielding

f n+1
j = (1− c) f n

j + c f n
j−1

Schematic of the upwind
scheme.

Note that for negative values of u one would alter the scheme to f n+1
j = (1−|c|) f n

j + |c| f n
j+1.

Using the von Neumann stability analysis we obtain

g = 1− c+ cexp(−ik∆x)
= 1− c+ c(cosk∆x+ isink∆x)
= 1+ c(cosk∆x−1)+ isink∆x

Stability analysis:

gg∗ = 1+2c(cosk∆x−1)+ c2 (cos2 k∆x−2cosk∆x+1
)
+ c2 sin2 k∆x

= 1+2c(cosk∆x−1)+2c2 (−cosk∆x+1)

= 1−4csin2 k∆x
2

+4c2 sin2 k∆x
2

= 1−4c(1− c)sin2 k∆x
2

Thus stability requires c = u∆t/∆x ≤ 1 or ∆t ≤ ∆x/u. This is consistent with the condition we
anticipated earlier based on the reasoning that information should travel at most one grid spacing
in a single time step for any explicit method which uses updates from the immediate vicinity of
any grid point.

Expanding the upwind scheme in Taylor series to determine the truncation error yields

∂ f
∂ t

+u
∂ f
∂x
− 1

2
u∆x(1− c)

∂ 2 f
∂x2 +O

(
∆t2,∆x2)= 0

Thus the scheme is first order accurate with the leading error term as En
j = −1

2u∆x(1− c) ∂ 2 f
∂x2 .

Which this is in principle all right for the convection equation it should be pointed out that the
error involves a second derivative of f and therefore represents a numerical diffusion term with the
diffusion coefficient

αnum =
1
2

u∆x(1− c)

Note that the diffusion term and associated error vanish for c = 1, however, in a more complex
system with varying u and ∆x such a choice is usually not possible.
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Leapfrog and Lax Wendroff schemes

A rather simple and second order accurate scheme is the
so-called Leapfrog scheme

f n+1
j − f n−1

j

2∆t
+

u
2∆x

(
f n

j+1− f n
j−1
)

= 0

which yields the algebraic equation

f n+1
j = f n−1

j − c
(

f n
j+1− f n

j−1
) Schematic of the Leapfrog

scheme.

Note that this is a two level scheme. The truncation error is of order O
(
∆t2,∆x2) such that the

scheme is second order accurate. The amplification factor is

g = icsin(k∆x)±
√

1− c2 sin2 (k∆x)

which yields stability for c≤ 1.t xi-1 i i+1nn+1n-1 i+2i-2 Schematic:           Leapfrog
Figure 9.2: Illustration of the temporal and spatial pattern of the time stepping in the Leapfrog
scheme.

The Leapfrog is, however, not without problems. The figure above illustrates that the scheme
only requires either the orange or the blue indicated grid points/time levels. Thus the differencing
decouples odd and even grid points at any given time step such that a solution can develop inde-
pendently on the interlaced odd/even grid and thus may lead to strong oscillations on the grid scale
if the two grids are combined. We will return later to this problem in connection to the issues of
diffusion and dispersion.

A scheme closely related to the Leapfrog is the Lax Wendroff method. This scheme uses the
forward time discretization with a correction that eliminates the lowest order error of the forward
time differencing

∂ f
∂ t
≈

f n+1
j − f n

j

∆t
− 1

2
∆t

∂ 2 f
∂ t2 =

f n+1
j − f n

j

∆t
− 1

2
∆tu2 ∂ 2 f

∂x2

which yields for the algebraic equation
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f n+1
j = f n

j −
1
2

c
(

f n
j+1− f n

j−1
)
+

1
2

c2 ( f n
j+1−2 f n

j + f n
j−1
)

The resulting truncation error is O
(
∆t2,∆x2). Note that the above formulation has problems in

two dimensions or in general in cases where u or ∆x is not constant. Therefore the Lax Wendroff
scheme is typically implemented as a two step method with the steps

(1) f ∗j+1/2 =
1
2
(

f n
j+1 + f n

j
)
+

1
2

c
(

f n
j+1− f n

j
)

(2) f n+1
j = f n

j +
1
2

c
(

f ∗j+1/2− f ∗j−1/2

)
The first step is often addressed as auxiliary and f ∗ as auxiliary array for f . Note that instead of
j + 1/2 and j− 1/2 on which the auxiliary array is defined one could just double the grid and
compute the auxiliary values on the even grid indices and the actual f on the odd grid.

This two step Lax Wendroff has the same accuracy as the one step scheme and stability requires
c≤ 1.

9.1.2 Crank-Nicholson scheme

As was the case for the diffusion equation the convection equation can be formulated in an implicit
manner. Following the example of the diffusion equation the finite difference Crank-Nicholson
scheme is given by

f n+1
j − f n

j

∆t
+

1
2

u
(

Lx f n+1
j +Lx f n

j

)
= 0

where Lx = (−1,0,1) is the three point finite difference operator, i.e., Lx f j = 1
2∆x

(
f j+1− f j−1

)
.

The above equation yields the following algebraic system

−1
4

c f n+1
j−1 + f n+1

j +
1
4

c f n+1
j+1 =

1
4

c f n
j−1 + f n

j −
1
4

c f n
j+1

The scheme is also second oder accurate and the amplification factor is

g =
1− i c

2 sin(k∆x/2)
1+ i c

2 sin(k∆x/2)

which demonstrates that this scheme is unconditionally stable.

Similar to the diffusion equation the crank-Nicholson approach can easily be extended to include
the Galerkin linear finite element method.
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Mx
f n+1

j − f n
j

∆t
+

1
2

u
(
Lx f n

j +Lx f n
j
)

= 0

Using a general mass operator Mx = (δ ,1−2δ ,δ )the algebraic system becomes

(
δ − 1

4
c
)

f n+1
j−1 +(1−2δ ) f n+1

j +
(

δ +
1
4

c
)

f n+1
j+1 =

(
δ +

1
4

c
)

f n
j−1+(1−2δ ) f n

j +
(

δ − 1
4

c
)

f n
j+1

Both the finite difference and the finite element CN schemes require the inversion of a banded
tridiagonal matrix as was the case for the one-dimensional diffusion equation. As for the diffusion
equation the advantage of a banded matrix is lost if the method is extended to two dimensions.

9.1.3 Summary of schemes for the one-dimensional convection equation

The following table provides an overview of various methods to solve the one-dimensional con-
vection equation. Most properties are self explanatory. The most noteworthy differences to the
diffusion equation is the fact that the FTCS scheme proves to be unstable for the convection equa-
tion.
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9.2 Numerical dispersion and dissipation

Central physical properties of the dynamics of many systems particularly of fluids and gases are
dispersion and diffusion. Dispersion describes the properties of wave propagation, e.g., the phase
and the group velocity of a sound wave of wave length λ . Note that the correct transport of waves
is crucial because waves transport information, and physical properties such as mass, momentum,
and energy. A closely associated property is diffusion. Diffusion in a physical system is equivalent
to mixing but it also implies damping. Diffusion has different physical meanings depending on the
quantity under consideration. Diffusion of the concentration or density of a substance is different
from diffusion in velocity space. In the latter case the corresponding transport is called viscous
and implies the loss of velocity structure and also the thermalization of directed motion. Finally
diffusion of pressure or temperature implies the conduction of heat, i.e., energy transport without
actual convection.

For the propagation of a wave dispersion determines the group and phases velocity of the wave
whereas diffusion is associated with dissipation and damping of the wave. The effects can be
expressed by the following expression for a perturbation

f (x, t) = f0 exp(−p(m) t)exp(im(x−q(m) t)) (9.1)

where m is the wavenumber (= 2π/wavelength), p(m) describes damping, and q(m) is the phase
(or transport) velocity. Considering simple convection with constant velocity u we expect

p(m) = 0
q(m) = u

It is instructive to consider the following equations

∂ f
∂ t

+u
∂ f
∂x
−α

∂ 2 f
∂x2 = 0 (9.2)

∂ f
∂ t

+u
∂ f
∂x

+β
∂ 3 f
∂x3 = 0 (9.3)

Substituting the plane wave approach (9.1) into the first of these equations yields the relations

p(m) = αm2 , q(m) = u

Thus it is seen that the effect of adding a diffusion term to the convection equation leads to damping
of a perturbation with the damping rate of αm2. Note that damping is strongest for the largest
values of the wavenumber or the smallest wavelengths.

Substituting the plane wave approach (9.1) into the second equation (9.3) yields
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p(m) = 0 , q(m) = u−βm2

It is seen that the term with the third derivative added to the convection equation does not lead to
damping but that it does alter the propagation speed of the perturbation. Even more important the
propagation speed is now dependent on the wave number and it is lowered most for the largest
wave numbers (smallest wavelength) in the system while it can be expected to be close to u for
sufficiently small wave numbers or large wavelengths.

In conclusion both effects dispersion and diffusion are strongest for large wave numbers or small
wavelengths. Note that the above considerations can be generalized in the sense that we can con-
sider additional modifications of the convection equation with the result that

• all odd spatial derivative terms added to the convection equation introduce and modify dis-
persion

• all even derivative terms added to the convection equation introduce diffusion.

9.2.1 Fourier analysis

We can now employ this approach and conduct a Fourier analysis of the algebraic equations of a
discretization. In general such a Fourier approach uses an expansion of the form

f (x, t) = ∑
k

fk exp(ik (x− vt))

Note, k steps through wave number space, i.e., k = 2π/λk. In general v is complex such that we
re-write this approach to separate imaginary and real part of the exponential

f (x, t) = ∑
k

fk exp(−p(k) t)exp(ik (x−q(k) t))

Substitution of this approach into a give discretization, e.g., upwind scheme yields for the amplifi-
cation factor

gk =
fk exp(−p(k)(t +∆t))exp(ik (x−q(k)(t +∆t)))

fk exp(−p(k) t)exp(ik (x−q(k) t))

or

gk = exp(−p(k)∆t)exp(−ikq(k)∆t)

Since |exp(ikq(k)∆t)|= 1 the absolution value of gkis determined by the factor exp(−p(k)∆t) or
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|gk|= exp(−p(k)∆t)

which can be solved for p(k) to determine the diffusion for the respective scheme. Further the
phase of gk determines the dispersion.

Using the upwind scheme we have

gk = 1+ c(cosΘ−1)+ icsinΘ

where Θ = k∆x . The phase of gk is

φk = tan−1 Imgk

Regk
=−kq(k)∆t

= tan−1 sinΘ

1+ c(cosΘ−1)

We can compare this to the exact phase which for constant velocity should be

φex =−ku∆t =−ck∆x

such that

φk

φex
=

q(k)
u

=− 1
ck∆x

tan−1 csinΘ

1+ c(cosΘ−1)

Evaluating this expression yields for

0 < c < 0.5 q(k) < u f or k∆x→ π

0.5 < c < 1 q(k) > u f or k∆x→ π

Example: Leapfrog

Amplification factor

g = icsinΘ±
√

1− c2 sin2
Θ

For c≤ 1 => |g|= 1 such that p = 0 or αnum = 0!

Phase:

q(k)
u

=
1

ck∆x
tan−1 csinΘ√

1− c2 sin2
Θ
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Note that for small arguments of Θ and c≤ 1 we have sin≈ tansuch that

q(k)
u
≈ 1

Thus long wavelengths are transported with the phase velocity u as expected. The largest deviations
from this correct transport occurs for short wavelength, i.e., large k.

For Θ = k∆x≈ π/2 and c� 1 we obtain

q(k)
u
≈ c

cπ/2
=

2
π

For Θ = k∆x≈ π/2 and c≈ 1 we obtain

q(k)
u
≈ 1

cπ/2
π

2
=

1
c

Summary remarks on numerical diffusion and dispersion

The prior section illustrates that a numerical approximation to the convection equation generally
introduces numerical dispersion and diffusion. The amplification factor from the von Neumann
stability analysis can be used to determine both of these effects. Here the amplitude of g is directly
related to the numerical diffusion and the phase of the amplification factor can be used to determine
the dispersion. It is worth noting that an amplification factor larger than 1 (implying instability)
also implies that the numerical diffusion term is negative!

In general diffusion is caused or modified by even spatial derivatives added to the convection
equation and dispersion to the odd derivatives. Since any finite difference or finite element scheme
will generate higher order errors associated with even and odd derivative terms these errors in
general contribute to numerical diffusion and numerical dispersion.

As a special case the high symmetry of the leapfrog method has the property that all truncation
errors are due to odd derivative (all coefficients of even derivative terms are zero). Therefore the
Leapfrog method has no diffusion. However, although this sounds attractive it actually poses a
problem because with any diffusion the effects of dispersion can generate strong grid oscillations
because wave with small wave lengths propagate different than longer wavelengths and the shortest
wave length is determined by the grid spacing. Thus it is advisable to combine the leapfrog method
with a diffusion term to counter the effects from dispersion.

Finally it should be noted that the insight into diffusion and dispersion can be used to correct the
discussed methods by adding corrective terms which eliminate the dominant orders for diffusion
and convection. This is basically equivalent to introducing higher (3rd or 4th) order methods.
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9.3 One- and two-dimensional transport equations

A straightforward extension of the discussion on numerical schemes for the convection and diffu-
sion equation is to consider a combined equation which we will address as a transport equation.

∂ f
∂ t

+u
∂ f
∂x
−α

∂ 2 f
∂x2 = 0

Before discussing any discretization let us first look at properties of this equation. This is done like
in the earlier example of the diffusion equation except that we will first consider the steady state
transport equation

u
∂ f
∂x
−α

∂ 2 f
∂x2 = 0

and introduce a normalization (or scaling) of x = Lx̃ such that after substitution the equation be-
comes

u
L

∂ f
∂ x̃
− α

L2
∂ 2 f
∂ x̃2 = 0

Now we can look for the scaling where both the convection and the diffusion terms in the equation
are of equal importance, i.e., u/L = α/L2 which yields L0 = α/u. Thus normalizing length scales
to this length L would render both terms of equal importance. For length scales smaller than L0
the diffusion term dominates while for length scales larger than L0 the convection term dominates.
The solution to the steady state problem with
f (0) = 0 and f (1) = 1 show this ‘boundary
layer’ characteristic for L0 = α/u = 1/20.

f (x) =
exp(ux/α)−1
exp(u/α)−1

xf 11 u/α=20
The cell Reynolds number is the number

Rcell =
∆x
L0

=
u∆x
α

Since the numerical solution should resolves the relevant physics it is usually required that ∆x≤ L0.
Note that we can also re-write the cell Reynolds number as

Rcell =
u

∆x
∆x2

α
=

τdiff

τconv

where τdiff = ∆x2/α is the diffusion time for a grid spacing (which we know already from the
discussion of the diffusion equation) and τconv = ∆x/u is the convection time over a grid spacing.
An explicit method should resolve both the diffusion time (corresponding to the condition s =
α∆t/∆x2 ≤ 1) and the convection time (corresponding to c = u∆t/∆x ≤ 1). Note that for actual
fluid simulation u can represent a convection velocity or a typical wave speed.



CHAPTER 9. CONVECTION EQUATIONS 174

9.3.1 Explicit schemes for the transport equation

FTCS method

In terms of a numerical scheme it would appear that the FTCS scheme is the simplest approach
yielding

f n+1
j − f n

j

∆t
=− u

2∆x

(
f n

j+1− f n
j−1
)
+

α

∆x2

(
f n

j−1−2 f n
j + f n

j+1
)

which gives an explicit equation for f n+1
j

f n+1
j =

(
s+

1
2

c
)

f n
j−1 +(1−2s) f n

j +
(

s− 1
2

c
)

f n
j+1

with c = u∆t/∆x and s = α∆t/∆x2. The von Neumann stability analysis yields an amplification
factor of

g = 1−2s(1− cosΘ)− icsin(Θ)

with Θ = k∆x which requires

0≤ c2 ≤ 2s≤ 1

for stability. Note that although the FTCS method was unstable for the convection equation is is
stable for this transport equation. However, another problem with the FTCS scheme is related to
the truncation error. Expanding the algebraic equation in a Taylor series yields

∂ f
∂ t

+u
∂ f
∂x
−
(
α−α

′) ∂ 2 f
∂x2 −

(
αu∆t +u3 ∆t2

3
−u

∆x2

6

)
∂ 3 f
∂x3

+
(

1
2

α
2
∆t−αu2

∆t2−α
∆x2

12
+

1
4

u4 ∆t3

3
+u2 ∆t∆x2

6

)
∂ 3 f
∂x3 = 0

with α ′ = u2∆t/2 which illustrates that the FTCS scheme modifies the diffusion term such that
physical diffusion and numerical diffusion compete. For accuracy this scheme requires that

u2
∆t/2� α or c2� 2s

=> Rcell = c/s� 2/c
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Upwind

Discretization:

∆ f n+1
j

∆t
=− u

∆x

(
f n

j − f n
j−1
)
+αLxx f n

j

which yields the equation for time level n+1

f n+1
j = (s+ c) f n

j−1 +(1−2s− c) f n
j + s f n

j+1

• First order accurate

• Numerical diffusion competes with physical diffusion

• Stability: 0≤ c2 ≤ 2s≤ 1

• Accuracy: Rcell � 2/c

DuFort-Frankel:

Discretization:

f n+1
j − f n−1

j

2∆t
=−uLx f n

j +
α

∆x2

(
f n

j−1− f n−1
j − f n+1

j + f n
j+1

)
Equation for time level n+1

f n+1
j =

1−2s
1+2s

f n−1
j − c

1+2s

(
f n

j+1− f n
j−1
)
+

2s
1+2s

(
f n

j+1 + f n
j−1
)

Note that for very small values of s it may be of advantage to re-write this expresion as

f n+1
j = f n−1

j − c
1+2s

(
f n

j+1− f n
j−1
)
+

2s
1+2s

(
f n

j+1−2 f n−1
j + f n

j−1

)
• Numerical diffusion coefficient: αc2

• Stability: c≤ 1; unconditional for s

• Accuracy: c2� 1
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Lax-Wendroff:

Discretization:

∆ f n+1
j

∆t
=−uLx f n

j +α
∗Lxx f n

j

Equation for time level n+1

f n+1
j =

(
s∗+

c
2

)
f n

j−1 +(1−2s∗) f n
j +
(

s∗− c
2

)
f n

j+1

with α∗ = α + 1
2uc∆x

• Numerical diffusion: No 2nd order but 4th order diffusion

• Stability: 0≤ c2 ≤ 2s∗ ≤ 1 with s∗ = α∗∆t/∆x2 =
(
α + 1

2uc∆x
)

∆t/∆x2

• Accuracy: Rcell ≤ 2 (to avoid spatial oscillations)

Modification of the 3pt centered difference through a four point upwind (asymmetric) approxima-
tion for u > 0. Using the general technique to expand

d f
dx
≈ a fi−2 +b fi−1 + c fi +d fi+1

yields

d f
dx

=
fi−2−6 fi−1 +3 fi +2 fi+1

6∆x

=
fi+1− fi−1

2∆x
+

fi−2−3 fi−1 +3 fi− fi+1

6∆x

We can use this approximation by introducing a parameter q and separate the portion that represents
the symmetric three point difference by defining the operator

L4+
x fi =

fi+1− fi−1

2∆x
+q

fi−2−3 fi−1 +3 fi− fi+1

3∆x

Choosing q = 0 yields the usual 3 point difference approximation and increasing q from 0 to 0.5
switches the derivative to the 4 point upwind.

Note that for u < 0 the corresponding operator should read

L4−
x fi =

fi+1− fi−1

2∆x
+q

fi−1−3 fi +3 fi+1− fi+2

3∆x

A corresponding correction to the Lax-Wendroff algorithm is given by
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∆ f n+1
j

∆t
=−uL4+

x f n
j +α

∗Lxx f n
j

for u > 0. The purpose of the introduction of the asymmetric upwind algorithm is an attempt to
reduce the strong grid oscillations that occur for the symmetric operators.

The actual discretization (u > 0) in this case is

f n+1
j =−qc

3
f n

j−2 +
(

s∗+
c
2

+qc
)

f n
j−1 +(1−2s∗−qc) f n

j +
(

s∗− c
2

+
qc
3

)
f n

j+1

• with s∗ = α∗∆t/∆x2 =
(
α + 1

2uc∆x
)

∆t/∆x2 = s+ c2/2

Example of numerical constraints

Consider: α = 10−5, u = 1, and at least to start with ∆x = 0.1.

• Diffusion: s = α∆t/∆x2 ≤ O(1) => ∆t ≤ ∆x2/α = 105∆x2

• Convection: c = u∆t/∆x≤ 1 => ∆t ≤ ∆x/u = ∆x

• Combined effect of diffusion and convection for accuracy:

Rcell =
c
s

=
u∆x
α

{
� 1 f irstorder(FTCS + Upwind)
≤ O(1) Lax−Wendroff

=> ∆x� α/u = 10−5 for FTCS and Upwind

=> ∆x≤ α/u = 10−5 for Lax-Wendroff

• Leapfrog/Dufort-Frankel: c2� 1 => ∆t2� ∆x2/u2 = ∆x2 = 10−2

• Stability:

– FTCS and Lax-Wendroff: c2 ≤ 2s => ∆t ≤ 2α/u2 = 2 ·10−5

– Leapfrog/Dufort-Frankel: c≤ 1 included in condition for accuracy

• Summary:

– FTCS, Lax Wendroff: ∆t ≤ O
(
10−5); ∆x≤ O

(
10−5)

– Leapfrog: Assume ∆x = 10−1 and ∆t = 10−2 (error in diffusion term =10−2)

Assume final time = 100. Number of grid operations:

• FTCS and Lax Wendroff: 1012

• Leapfrog: 105
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9.3.2 Crank-Nicholson schemes

Discretization:

∆ f n+1
j

∆t
= (αLxx−uLx)

f n
j + f n+1

j

2

Equation for time level n+1

−s+ c
2

f n+1
j−1 +(1+ s) f n+1

j − s− c
2

f n+1
j+1 =

s+ c
2

f n
j−1 +(1− s) f n

j +
s− c

2
f n

j+1

Consistency:

∂ f
∂ t

+u
∂ f
∂x
−α

∂ 2 f
∂x2 +u

∆x2

12
(
2+ c2) ∂ 3 f

∂x3 −α
∆x2

12
(
1+3c2) ∂ 4 f

∂x4 = 0

• Accuracy: O
(
∆t2,∆x2)

• Unconditionally stable

• Rcell ≤ 2for non-oscillatory solutions

Finite element Crank-Nicholson method:

Mx
∆ f n+1

j

∆t
= (αLxx−uLx)

f n
j + f n+1

j

2

Equation for time level n+1

(
δ − s

2
− c

4

)
f n+1

j−1 +(1−2δ + s) f n+1
j +

(
δ − s

2
+

c
4

)
f n+1

j+1 =(
δ +

s
2

+
c
4

)
f n

j−1 +(1−2δ − s) f n
j +

(
δ +

s
2
− c

4

)
f n

j+1

with δ = 1/6 for linear fem. With the generalized mass operator Mx = (δ ,1−2δ ,δ ) => consis-
tency condition:

∂ f
∂ t

+u
∂ f
∂x
−α

∂ 2 f
∂x2 +u∆x2

(
1
6

+
c2

12
−δ

)
∂ 3 f
∂x3 −α∆x2

(
1

12
+

c2

4
−δ

)
∂ 4 f
∂x4 = 0

Dispersion (3rd order) = 0 for: δ = 1/6+ c2/12

• Unconditionally stable
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• Rcell ≤ 2for non-oscillatory solutions

Using the 4 point upwind instead of the center difference approximation (for u > 0)

L4+
x fi =

fi+1− fi−1

2∆x
+q

fi−2−3 fi−1 +3 fi− fi+1

3∆x

generates the discretization:

qc
6

f n+1
j−1 +

(
δ − s

2
− c

4
− qc

2

)
f n+1

j−1 +
(

1−2δ + s+
qc
2

)
f n+1

j +
(

δ − s
2

+
c
4
− qc

6

)
f n+1

j+1 =

−qc
6

f n
j−1 +

(
δ +

s
2

+
c
4

+
qc
2

)
f n

j−1 +
(

1−2δ − s− qc
2

)
f n

j +
(

δ +
s
2
− c

4
+

qc
6

)
f n

j+1

Note that similar to the Leapfrog the convection term can be substituted by the 4 point upwind first
derivative operator introduced in connection to the Lax-Wendroff method.

9.3.3 Implementation of the different methods

The explicte and implicit methods for the solution of the transport equation are impleneted in the
program trans.f which can be found on the web page. Specifically the profram implements the
upwind, the leapfrog/Dufort-Frankel, the Lax-Wendroff, and the Crank-Nicholson methods. The
program also allows to use a mass operator with a variable choice of δ in the operator, and it
allows to substitute the 4 point upwind discretization in the Lax-Wendroff and CN methods. The
web page provides a readme file which is represented here for a brief summary of the program,
associated files and parameters.

Program trans.f simulates the transport equation

∂ f
∂ t

+u
∂ f
∂x
−α

∂ 2 f
∂x2 = 0

and as a special case with α = 0 also the convection equation.

The fortran code require 3 files:

• trans.f - source code of the program

• transin - include fiel with parameter declarations

• trans1.dat - parameter file to select methods and parameters to run the program

Plotting: 2 idl programs

• tanim.pro - program to generate small animation from the output data. Execute this program
once (.r tanim). To recycle the animation enter xanimate, 2 at the idl prompt after running
tanim. To obtain a smooth animation you may need to lower nout (in trans1.dat) and use a
larger number of frames per second in xanimate: xanimate, 4
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• trans.pro - program to plot (also in postscript) output from trans.f . The thick solid lines are
the initial and the final solution. The thin solid line is the exact final solution. The dashed
lines represent the intermediate solution. If there are to many or to few intermediate solution
change the parameter nout accordingly.

The program implements 5 different methods:

• Upwind

• Leapfrog

• Lax-Wendroff

• FDM Crank-Nicholson

• FEM Crank-Nicholson

For the Lax-Wendroff and Crank-Nicholson
methods a parameter q can switch between 3pt
centered difference and 4pt upwind difference
approx. where q (or quein trans1.dat) can be any
value between q = 0 (=> 3pt diff) and q = 0.5
(=>4pt upwind). The generalized finite element
Crank-Nicholson method is obtained through any
non-zeror value of δ (delta in trans1.dat).

Parameters in trans1.dat:

ntmax - max number of integration steps

tmax - final time

xmin, xmax - boundaries in x

u - convection velocity

c - parameter c in convection equation

dt - time step

cordt - switch whether tiestepping is deter-
mined through c or directly through
dt (note one of these is determined
through the other if u and dx are fixed)

delta - mass operator weight for FEM
method

que - switch for 3pt centered or 4 pt upwind
difference approx

nout - number of integration steps between
outputs

f0 - normalization of f

init - chooses initial condition between
truncated sine wave (1), sine wave (2),
or rectangular pulse (3)

lambda - wavelength or pulse size

fb(i) - boundary value at xmin and xmax

maxex - number of modes in the exact so-
lution.

Summary of schemes for the one-dimensional transport equation:
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9.3.4 Two-dimensional transport

∂ f
∂ t

+u
∂ f
∂x

+ v
∂ f
∂y
−αx

∂ 2 f
∂x2 −αy

∂ 2 f
∂y2 = 0

Explicit schemes

Similar to one dimension, e.g.

FTCS:

∆ f n+1
jk

∆t
= (αxLxx−uLx) f n

jk +(αyLyy− vLy) f n
jk

Conditions for stability:

sx + sy ≤ 1/2

c2
x/sx + c2

y/sy ≤ 2

Note: Severe diffusion for 1st order schemes.

Implicit methods

Advantage: no stability restriction

Disadvantage: Efficiency

Example FDM Crank-Nicholson:

∆ f n+1
jk

∆t
= (αxLxx−uLx)

f n
jk + f n+1

jk

2
+(αyLyy− vLy)

f n
jk + f n+1

jk

2

Extension to FEM Crank-Nicholson:

Mx⊗My

[
∂ f
∂ t

]
jk

= (−uMy⊗Lx− vMx⊗Ly +αxMy⊗Lxx +αyMx⊗Lyy)
f n

jk + f n+1
jk

2

Here, Lx, Lxx, Mx, etc as before, e.g., Mx = (δ ,1−2δ ,δ ) with δ = 1/6 for linear fem.

Solution: Same as for the diffusion equation -> splitting scheme (ADI) to solve first for index j
and then for index k.

Cross-stream diffusion
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Cross-stream diffusion is a potential issue if the convective derivative is only 1st order accurate
and flow is not aligned with one of the coordinate axes. Consider the two-dimensional steady state
transport equation

u
∂ f
∂x

+ v
∂ f
∂y
−α

∂ 2 f
∂x2 −α

∂ 2 f
∂y2 = 0

the upwind method for the 1st derivatives and the 3 point centered approximation for the 2nd
derivatives. The first order accuracy of the 1st derivative approximations leads to the modified
equation

u
∂ f
∂x

+ v
∂ f
∂y
−
(
α−α

′
x
) ∂ 2 f

∂x2 −
(
α−α

′
y
) ∂ 2 f

∂y2 = 0

with α
′
x =

1
2

u∆x, α
′
y =

1
2

v∆y

Now let us assume the flow is not aligned with one of the coordinate axes but inclined by an angle
of δ with u = hcosδ and v = hsinδ with the flow magnitude h. Introducing the coordinates s
along the flow and n normal to the flow the transport equation transforms into

h
∂ f
∂ s
−α

(
∂ 2 f
∂ s2 −

∂ 2 f
∂n2

)
−α

′
s
∂ 2 f
∂ s2 −α

′
sn

∂ 2 f
∂ s∂n

−α
′
n

∂ 2 f
∂n2 = 0

with

α
′
s =

1
2

h
(
∆x cos3

δ +∆y sin3
δ
)

α
′
sn =

1
2

h(−∆x cosδ +∆y sinδ )sin2δ

α
′
n =

1
2

h
(
∆x cosδ sin2

δ +∆y sinδ cos2
δ
)

For uniform grid spacing ∆y = ∆x, the streamwise diffusion coefficient α ′s maximizes for δ =
0◦, 90◦and has a minimimum at δ = 45◦. Vice versa the cross-stream diffusion coefficient maxi-
mizes at δ = 45◦ and is 0 for δ = 0◦, 90◦. Often streamwise diffusion is less important because
boundary layer flow develops strong gradient across the flow. However, cross-stream diffusion is
not present if the flow is aligned with the x or y direction (because the diffusion coefficient is partly
caused by the flow)!

Concluding remarks

Advective equations introduce the aspect of transport of information. This is already implicit and
consistent with the hyperbolic character of the equations. The transport can occur in a variety of
ways, as waves such as sound waves, or through transport of substance. In a more physical sense
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this also implies the transport of material, momentum, and/or energy. An inherent aspect of this
transport is dispersion, i.e., the property that the speed of this transport depends on the the wave
length (or structure). Clearly the proper description of this tranport requires a more rigorous model
of the relevant physics which adds complexity. However the simple transport equation allows us
to shed light on the influence of the numerical approximation on the transport.

The chapter has introduced the simple advection equation and the transport equation as a model to
examine the influence of the numerical approximation. We have seen that the aspects of numerical
diffusion and dispersion are of major importance for the accuracy of the transport and the limi-
tations of the model. Specifically it was seen that first order accurate convection approximation
introduce strong numerical diffusion which requires high resolution to miinimize these effects. A
much better approximation uses at least 2nd order accurate schems which eliminate the dominant
diffusion terms. However, it was also illustrated that thes methods introduce numerical dispersion
with the effect that the numerical scheme alters the speed of the transport in particular for small
wave lengths or high wave numbers. To compensate for this non-desired effect some diffusion may
be need to damp grid oscillations which arise through the dispersion effects barticularly if strucure
is not well resolved by the grid, i.e., if there are large gradients on the grid scale. Possibly the best
approach might be to use 3rd order methods where the dominant error is 4th order diffusion. This
reduces damping to the smallest grid scales and can be expected to dominate 5th order dispersion.
Note, however, that this generates more complexity in the discretization of a complex set of basic
equations and introduces also additional complexity for boundary conditions because more then a
single set of boundary layer points are needed for the mathematical boundary.

9.4 Nonlinear transport

An important aspect of transport is nonlinearity. The best example for such nonlinearity is through
the momentum equation of a fluid for instance in the form of Eulers equation or the Navier Stokes
equation. A simple equivalent of this is Burgers equation, which contains the nonlinearity in the
u∂u/∂x term and includes a simple viscous term.

∂u
∂ t

+u
∂u
∂x
−ν

∂ 2u
∂x2 = 0

The the most important aspect of this nonlinearity is the aspect of wave steepening and breaking.
This process is present in many physical systems. A good example is the breaking of surface waves
in the shallow waters of a beach. The physics behind this wave breaking is the dependence of the
wave propagation speed on the depth of the water. In deep water the wave velocity is very large and
it decreases with decreasing depth of the water. Since the water is deeper for the top of the waves,
these move slightly faster then the bottom of the waves. This process leads to increasing steepening
of the waves as they approch the beach. A dramatic realization of this mechanism are Tsunamis
where the wave travels very fast on the open ocean (with a rather small amplitude). It slows down
much approaching the shallow waters of a beach and increases much in amplitude (because the
energy transported is reasonably conserved). The same process exists for many other types of
waves. For instance, for sound waves the speed depends on the temperature of a gas. However,



CHAPTER 9. CONVECTION EQUATIONS 185

the temperature is slightly enhanced in the wave region where the medium is compressed (because
the pressure increase scales with a factor of γ relative to the density increase δ p = γδn). Thus
compression regions in a wave travel minutely faster then expansion regions leading again to wave
steepening. Note that this does not usual generate shock because of two other aspects. Sound waves
expand in a three-dimensional space thereby loosing rapidly amplitude because the wave energy
is distributed over and increasing area. Also, viscosity of the medium can cause damping of a
wave and viscosity due to atmospheric turbulence has length scales which agree reasonably with
the audible spectrum of soundwaves. The Figure below illustrates the process of wave steepening
in the inviscid case (left and the case for viscous damping.

Figure 9.3: Wave breaking in the inviscid case (left and for a visous medium (right).

Note that the process of wave steepening for Burger’s equation is similar to that of sound waves
or surface water waves. The nonlinearity prpagates a region with larger amplitude of u faster than
region with smaller values of u. The viscosity acts basically like a diffusion terms and thereby
reduces the amplitude of a signal.

Burger’s equation can be written in a conservative form

∂u
∂ t

+
∂F
∂x
−ν

∂ 2u
∂x2 = 0 (9.4)

with F =
1
2

u2

which is typically beneficial to numerical discretization. Nonlinearity:

• rapid growth in spectrum of small wavelengths λ .

• energy associated with λ ≤ 2∆x re-appears in longer waves (conservative schemes) - aliasing

=> distortion + instability

Dissipation attenuates short wave length or high wavenumber modes.

9.4.1 Explicit schemes

FTCS:
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un+1
j −un

j

∆t
+

1
2∆x

{
un

j

(
un

j+1−un
j−1

)
Fn

j+1−Fn
j−1

}
− ν

∆x2

(
un

j−1−2un
j +un

j+1
)

= 0

with F = u2/2. Properties similar to tranport equation: 1st order accurate => large numerical dis-
sipation competing with physical viscosity. Stability requires numerical dissipation to be smaller
than numerical dissipation. Note that stability analysis requires to linearize Burgers equation.

Upwind:

A potential improvement is the substitution of convection term with a 4 point upwind approxima-
tion:

L(4)
x Fj =

1
∆x

(
Fj+1−Fj−1

)
+

q
3∆x

(
Fj−2−3Fj−1 +3Fj−Fj+1

)
Truncation error is O

(
∆2

x
)

for all q except for q = 1/2 when it is O
(
∆3

x
)
.

Lax Wendroff: Let us first consider the inviscid case: ∂u/∂ t + ∂F/∂x = 0. Here the Lax-
Wendroff schem should read:

un+1
j −un

j

∆t
+

1
2∆x

(
Fn

j+1−Fn
j−1
)
+T? = 0

where a term T? is added to eliminate the first order error. The Taylor expansion of the above
equation yields

∂u
∂ t

+
1
2

∂ 2u
∂ t2 ∆t + ..+

∂F
∂x

+O
(
∆

2
x
)

= 0

where the 2nd term can be re-written as

∂

∂ t
∂u
∂ t

=
∂

∂ t

(
−∂F

∂x

)
=− ∂

∂x
∂F
∂ t

=− ∂

∂x
u

∂u
∂ t

=
∂

∂x
u

∂F
∂x

such that we can correct for the first order error by subtracting a sufficiently accurate ( centered
approximation of the term on the right of the last equation which yields

un+1
j −un

j

∆t
+

1
2∆x

(
Fn

j+1−Fn
j−1
)
− ∆t

2∆2
x

[
u j+1/2

(
Fn

j+1−Fn
j
)
−u j−1/2

(
Fn

j −Fn
j−1
)]

= 0

For the case of simple nonlinear equation this is a reasonable approximation but for the full set of
fluid equation F takes a more complicated form. In this case the most efficient implementation is
a two step algorithm:
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u∗j+1/2 =
1
2
(
un

j +un
j+1
)
− ∆t

2∆x

(
Fn

j+1−Fn
j
)

un+1
j = un

j −
∆t
∆x

(
F∗j+1/2−F∗j−1/2

)
For the full equation including the viscous term the corresponding two step scheme is

u∗j+1/2 =
1
2
(
un

j +un
j+1
)
− ∆t

2∆x

(
Fn

j+1−Fn
j
)

+
s
4
[(

un
j−1−2un

j +un
j+1
)
+
(
un

j −2un
j+1 +un

j+2
)]

un+1
j = un

j −
∆t
∆x

(
F∗j+1/2−F∗j−1/2

)
+ s
(
un

j−1−2un
j +un

j+1
)

The stability constraint for this system is

∆t
(
u2

∆t +2ν
)
≤ ∆x2

9.4.2 Implicit Methods

Formally it appears straightforward to cast Burgers equation (9.4) into a Crank-Nicholson formu-
lation

∆un+1
j

∆t
=−1

2
Lx

(
Fn

j +Fn+1
j

)
+

ν

2
Lxx

(
un

j +un+1
j

)
with the usual definitions of the centered derivative operators Lx and Lxx. However, the nonlinear
term Fn+1

j now poses a problem because it requires an implicit solution for un+1 . This problem is
addressed through linearization which through

Fn+1
j = Fn

j +
∂F
∂ t

∆t +
1
2

∂ 2F
∂ t2 ∆t + .. = Fn

j +∆tu
∆u
∆t

+ ..

or Fn
j +Fn+1

j = 2Fn
j +un

j

(
un+1

j −un
j

)
= un

ju
n+1
j . Note that we obtain the same from

1
2
(
un

j
)2 +

1
2

(
un+1

j

)2
= un

ju
n+1
j +

(
∆un+1

j

)2

with ∆un+1
j = un+1

j −un
j i.e., straightforward linearization. Thus the CN discretization becomes

un+1
j +

1
2

∆tLx

(
un

ju
n+1
j

)
− 1

2
ν∆tLxxun+1

j = un
j −

1
2

ν∆tLxxun
j
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or for the FEM CN method

Mxun+1
j +

1
2

∆tLx

(
un

ju
n+1
j

)
− 1

2
ν∆tLxxun+1

j = Mxun
j −

1
2

ν∆tLxxun
j

This discretization leads to a tridiagonal matrix with coefficients

c j, j−1 = δ − ∆t
4∆x

un
j−1−

s
2

c j, j = 1−2δ + s

c j, j+1 = δ +
∆t

4∆x
un

j−1−
s
2

d j =
( s

2
+δ

)
un

j−1 +(1− s−2δ )un
j +
( s

2
+δ

)
un

j+1

and the system of equations to solve is ∑ j c jkuk = d j or

c j, j−1un
j−1 + c j, jun

j + c j, j+1un
j+1 = d j

Notes:

Instead uf the center first derivative we can alos use the 4th order upwind step. In this case we have

Mxun+1
j +

1
2

∆tL4+
x

(
un

ju
n+1
j

)
− 1

2
ν∆tLxxun+1

j = Mxun
j −

1
2

ν∆tLxxun
j

with

L(4)
x Fj =

1
2∆x

(
Fj+1−Fj−1

)
+

q
3∆x

(
Fj−2−3Fj−1 +3Fj−Fj+1

)
which alters the matrix to a quadridiagonal one and the coefficients to

c j, j−2 = q
∆t

6∆x
un

j−2

c j, j−1 = δ −
(

1
4

+
q
2

)
∆t

4∆x
un

j−1−
s
2

c j, j = 1−2δ +q
∆t

2∆x
un

j−2 + s

c j, j+1 = δ +
(

1
4
− q

6

)
∆t
∆x

un
j−1−

s
2

d j =
( s

2
+δ

)
un

j−1 +(1− s−2δ )un
j +
( s

2
+δ

)
un

j+1

In this case the matrix first has to be reduced to tridiagonal form before using the standart Thomas
algorithm for the solution.
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9.4.3 Implementation of Burgers equation

The equation is similar to the linear transport equation and is implemented in the nonlinear version
of trans.f which can be found on the web page. Most parameters are the same or similar to the linear
version of the transport code. The program allows for 3 different initial conditions. Note that only
the wave and the localized perturbation (truncated wave) are compatible with periodic boundary
conditions. The step function initial condition requires Dirichlet or von Neumann conditions. For
this condition the initial state is given by

u0 (x) = u(x,0) =

{
1 f or x≤ 0
0 f or x > 0

with corresponding Dirichlet boundary conditions. An exact solution for the equation is

u =
∫

∞

−∞

x−ξ

t exp [−RG(ξ ,x, t)dξ ]∫
∞

−∞
exp [−RG(ξ ,x, t)dξ ]

G(ξ ,x, t) =
∫

∞

u
(
ξ
′)dξ

′

R = 1/ν

Note that for the actual implementation not much changes for the upwind, leapfrog, and Lax-
Wendroff methods. However, The Crank-Nicholson method changes due to the nonlinear nature of
the problem which alters the method of the implicit solution as pointed out in the prior subsevtion.

Addition of artificial dissipation term 0.5νa∆tLxx

(
Fn

j +Fn+1
j

)
. Treating the nonlinearity the same

way as before yields for the FEM CN method

Mxun+1
j +

1
2

∆t
[
L4+

x

(
un

ju
n+1
j

)
−νLxxun+1

j −νa∆tLxx

(
un

ju
n+1
j

)]
= Mxun

j −
1
2

ν∆tLxxun
j

9.5 Systems of Equations

As outlined in the introduction section on physical models, typically we have to solve system of
equations for reasonably realistic models. In the case of fluid dynamics this set can be formulated
as

∂q
∂ t

+
∂F
∂x

= 0

With q =


ρ

ρu
p

γ−1 + 1
2ρu2

 F =


ρu

ρu2 + p(
γ p

γ−1 + 1
2ρu2

)
u
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More generally in multi-dimensions

∂q
∂ t

+∇ ·F = 0

where F becomes a 3x5 matrix because of the 3 cartesian directions and because of 5 dependent
variables (note that velocity has 3 components). More generally, the equations of magnetohydro-
dynamics can be cast into a similar form where an additional set of equations for the magnetic field
is included. The form of the equations above imply local conservation of mass, momentum and
energy. They therefore also require that the system described by these equations is closed in the
sense that rhs accounts for all mass, momentum, and energy density. If there is a second species of
matter with which the material represented by ρ interacts, further equations and interaction terms
are required for closure.

The example does not include dissipative terms but such terms can beadded in a conservative
formulation, for instance by adding diffusion, e.g., a term −α∂ρ/∂x to the first term in F.

Some of the most straightforward discretizations of this set of equations is through the leapfrog

qn+1
j = qn−1

j − ∆t
2∆x

(
Fn

j+1−Fn
j−1
)

(9.5)

or the Lax-Wendroff schemes

q∗j+1/2 =
1
2
(
qn

j +qn
j+1
)
− ∆t

2∆x

(
Fn

j+1−Fn
j
)

qn+1
j = qn

j −
∆t
∆x

(
F∗j+1/2−F∗j−1/2

)
(9.6)

Both are second order accurate. Note that any dissipative terms on the rhs involve second derivative
terms and should be treated in the manner descriped in the nonlinear transport for the Lax-Wendroff
or using the Du-Fort-Frankel discretization for the Leapfrog method. Note also that the order of the
rhs discretization can be increased through the third order upwind (4 point) method as illustrated
before.

For implicit schemes the Crank-Nicholson is formally

qn+1
j −qn

j =− ∆t
4∆x

[(
Fn

j+1−Fn
j−1
)
+
(

Fn+1
j+1−Fn+1

j−1

)]
The issue here as in the prior example of Burgers equation is the nonlinearity which is similarly
resolved by linearization

Fn+1 = Fn +A ·∆qn+1

A = ∂F/∂q
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which generates

− ∆t
4∆x

A j−1 ·∆qn+1
j−1 +1 ·∆qn+1

j−1 +
∆t

4∆x
A j−1 ·∆qn+1

j+1 =− ∆t
4∆x

[(
Fn

j+1−Fn
j−1
)]

This discretization represents a block tridiagonal system which can be solved in a fairly efficient
manner by a generalized Thomas algorithm.

Stability:

∂q
∂ t

+
∂F
∂x

= 0

Neumann Method is only applicable to linear systems of equations. Therefore the above system
has to be linearized

∂q
∂ t

= A ·∆∂q
∂ t

A = ∂F/∂q

For all components the discretization will generate a system of equations which relate qn+1
j to qn

j
in a form

qn+1
j = G ·qn

j

where G maps qn
j to qn+1

j . Any amplification of one of the components of q j corresponds to
exponential growth. More precisely any amplification in the system of equation has an equivalent
eigenvector component. Transforming the above system into the Eigenvector coordinate system
implies that instability is present if any Eigenvalue λi of G has a magnitude larger then 1.

For instance for the Crank-Nicholson system the G is given by

G =
(

1+
i∆t
2∆x

Asinθ

)−1(
1+

i∆t
2∆x

Asinθ

)1

Stability regquires for all |λi| ≤ 1.

General remarks regarding stability: Difficult issue in particular in nonhomogeneous system. Lin-
earization even for a 1D equilibrium usually requires the solution of a higher order complicated
differential euation. In addition there may be physical instabilities which would also be present in
this numerical stability analysis (provided the method is appropriate for the problem) such that in
addition to a demanding analytic solution one would have to distinguish between numerical and
physical instability. Usually stability analysis is conduncted for homogeneous systems for these
reasons. It is alo often sufficient to understand the maximum velocity for information transport,
which in cases with flow would be the fastest wave speed cmax added to the maximum convec-
tive velocity vmax, such that the stability limit for information transport in a complex system is
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∆t ≤ ∆x/ |cmax + vmax|. Note that this represents only the time step limitation for the hyperbolic
part of the system. If diffusion is present there are additional requirements (as discussed for the
simple case of the FTCS scheme) and depending on the treatment of a diffusion or viscous term
the limitation could be more severe. A similar additional limitation applies if source terms are
present for the equations under consideration. For instance in a case where material is produced
the production ration could be expressed through

∂ρ

∂ t
+∇ ·ρu = νs (ρs−ρ)

This equation could represent ionization, recombination, or chemical production rates. Typically
for an explicit scheme νs∆t ≤ 1.

Finally it should be noted that the stability limitations for a nonhomogenous system alway apply
to the location of the most severe restriction, i.e., where for instance the combination of convective
flow and wave speed is largest. This also applies in the case of nonuniform grid separations. In this
case the grid transport velocity ∆x/∆t is smallest at the location of the highest resolution (smallest
grid spacing) such that often the time step limitation should be viewed ∆t ≤min(∆x/ |cmax + vmax|).

Group Finite Element Method

One-dimensional formulation:

Often nonlinear equations render the finite element method rather inefficient in multidimensional
systems. In this case the so-called group finite element method provides a more efficient approach.

Conventional finite element method:

u = ∑
l

φlul

Group finete element formulation:

u = ∑
l

φlul F = ∑
l

φlFl

Example (Burgers equation, uniform grid):

du j

dt
+LxFj +νLxxu j = 0

where the second term in the conventional FEM becomes

u
∂u
∂x

=
u j−1 +u j +u j+1

3
u j+1−u j−1

2∆x

whereas the group FEM method uses:
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LxFj =
Fj+1−Fj−1

2∆x
=

1
2

u2
j+1−u2

j−1

2∆x

=
1
2

u j−1 +u j +u j+1

3
u j+1−u j−1

2∆x

No change for linear terms.

Multi-dimensional formulation:

∂q
∂ t

+
∂F
∂x

+
∂G
∂x
−ν

(
∂ 2q
∂x2 +

∂ 2q
∂y2

)
= 0

q =
(

u
v

)
, F =

(
u2

uv

)
, G =

(
uv
v2

)
Group finite element approximation:

u2 =
4

∑
l=1

(
u2)

l φl (ξ ,η)

uv =
4

∑
l=1

(uv)l φl (ξ ,η)

...

Which generates the equation

Mx⊗My
∂q
∂ t

∣∣∣∣
jk

=−My⊗LxF−Mx⊗LyG+ν (My⊗Lxx−Mx⊗Lyy)q

As is seen with the group finite element meth the discretisation is straightforward whereas for the
conventional element method every nonlinear term has to be computed separately and generates
more terms and products in the discretized equations such that the group FEM generates vewer
operations and a more efficient code.

Finally it should be remarked that similar difficulties arise for multi-dimensional implicit methods
as have been pointed out before. Imlicit formulations generally lead to large matricices that have
to be inverted at every integrations step. As before an efficient implementation is achieved by ADI
methods which generate banded matrices (tridiagonal or quadridiagonal depending on the chosen
derivative operators).


