8. Pressure/energy equation:

Consider the pressure equation for isotropic pressure in the absence of heat conduction

$$\frac{1}{\gamma - 1} \left(\frac{\partial p}{\partial t} + \nabla \cdot p \mathbf{u} \right) = -p \nabla \cdot \mathbf{u} + Q^E$$

a) Assuming $h = p/\rho^{\gamma}$, demonstrate that the pressure equation combined with the continuity equation can be written as

$$\frac{\partial h}{\partial t} + \mathbf{u} \cdot \nabla h = R$$

and compute *R* as a function of Q^E .

9. a) Demonstrate that the two-dimensional compressible irrotational steady state flow

$$\left(\frac{u^2}{a^2} - 1\right)\frac{\partial u}{\partial x} + \left(\frac{uv}{a^2}\right)\frac{\partial u}{\partial y} + \left(\frac{uv}{a^2}\right)\frac{\partial v}{\partial x} + \left(\frac{v^2}{a^2} - 1\right)\frac{\partial v}{\partial y} = 0$$
$$-\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$$

are equivalent to the equations

$$-\frac{\gamma p}{\rho} \nabla \cdot \mathbf{u} + \mathbf{u} \cdot ((\mathbf{u} \cdot \nabla) \mathbf{u}) = 0$$
⁽¹⁾

$$\nabla \times \mathbf{u} = 0 \tag{2}$$

for the velocity $\mathbf{u} = (u, v)$ with $a^2 = \gamma p / \rho$.

b) Derive equation (1) using the steady state continuity (2.18), momentum (2.19), and pressure equation (2.20) for isotropic pressure $\underline{\Pi} = p\underline{1}$ (no source terms, no external force terms, and no heat conduction. Hint: Use the continuity and momentum equations to replace the $\nabla \rho$ and ∇p terms in the pressure equation).

10. Read section 3.5 of the manuscript, derive the Fourier transform of the Navier Stokes equations, and show that the determinant for the Fourier transform matrix is

$$(\sigma_x^2 + \sigma_y^2) \left[i(u\sigma_x + v\sigma_y) + \frac{1}{R_e}(\sigma_x^2 + \sigma_y^2) \right] = 0$$

11. General Technique - 2nd Derivative Approximation

a) Use the general technique to determine the coefficients *a* to *c* and the leading error term in the following expression

$$\frac{d^2f}{dx^2} = af_{i-2} + bf_{i-1} + cf_i$$

b) Do the same for the expression

$$\frac{d^2f}{dx^2} = af_{i-1} + bf_i + cf_{i+1} + df_{i+2} + ef_{i+3}$$

Please turn in the solutions to the homework on Monday, 2/18/2013