Numerical Simulation - Homework, 2/11/2013

8. Pressure/energy equation:

Consider the pressure equation for isotropic pressure in the absence of heat conduction
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Assuming & = p/p?, demonstrate that the pressure equation combined with the continuity equation can

be written as
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and compute R as a function of QF .
Solution:

Assuming a function &2 = pp~7, demonstrate that the pressure equation combined with the continuity
equation can be written as
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Using the continuity
ap
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and the pressure equations
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Note that for resistive heating O = 172 > 0 such that dh/dt > 0. The quantity 4 is a measure of fluid
entropy and increases only in the presence of nonadiabatic - for instance resistive heating.



9. a) Demonstrate that the two-dimensional compressible irrotational steady state flow
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are equivalent to the equations
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for the velocity u = (u,v) with a®> = yp/p.

b) Derive equation (1) using the steady state continuity (2.18), momentum (2.19), and pressure equation
(2.20) for isotropic pressure II = p1 (no source terms, no external force terms, and no heat conduction.
Hint: Use the continuity and momentum equations to replace the Vp and Vp terms in the pressure
equation).

Solution:

(a) Eq. (1), 1st term:

Yy 20w OV
qu_ a<3x+<9y)

Eq. (1), 2nd term:
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The sum of the two terms and division by a? yields the first of the two equations.

2nd equation: The z component of the curl yields
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(b) Derivation of equation (1) from:
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With V- (pu) = 0 we obtain
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With Vu? = 2u x (V x u) +2 (u- V)u we obtain
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10. Read section 3.5 of the manuscript, derive the Fourier transform of the Navier Stokes equations, and

show that the determinant for the Fourier transform matrix is
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Solution:

Define the Fourier transform as
(G5, 0y) = / / u(x, y) exp(—ic,x) exp(—icyy) dxdy

or symbolic as u = Fu with the property that
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Steady Navier-Stokes equations
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Fourier transform:
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In matrix form:
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which yields from det][..] = 0 the equation
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11. General Technique - 2nd Derivative Approximation

a) Use the general technique to determine the coefficients a to ¢ and the leading error term in the following
expression
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b) Do the same for the expression
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Solution:
(a) Taylor expansion of
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Conditions for a, b, ¢, and d:
at+b+c = 0
—2a—-b = 0
4a+b = 2/Ax*
Solution
a = 1/A%*
b = —2/A¥
c = 1/A¥
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(b) Taylor expansion of
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Conditions for a, b, ¢, and d:

a+b+c+d+e = 0
—a+c+2d+3e = 0
a+c+4d+9e = 2/Ax
—a+c+8d+27e = 0
a+c+16d+8le = 0

eliminating a from (2) to (5) (by adding 2 and 3, 3and 4, 4 and 5):
2c4+6d+12¢ = 2/Ax*

2c4+12d +36e = 2/Ax?
2c+24d+108e = O

eliminating ¢ (by subtracting 1from 2 and from 3) in the above equations:

6d+24e = 0

9d+48¢ = —/Ax?
Solution:

e = —1/12A4°

d = 4/12A¢

c = 6/12Ax°

a = 11/12A4°

b = —20/12Ax°
and

—a+c+32d+243e = —120/12Ax

such that
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The order of the error for the 3 point approximation in part (a) is linear in Ax and for the 5 point approx-
imation in part (b) it is Ax>. In general for the nth derivative at least n+1 grid points are needed for the
approximation. For an m point approximation the error is usually of order Ax™".



